cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A248800 a(n) = (2*n^2 + 3 + (-1)^n)/2.

Original entry on oeis.org

2, 2, 6, 10, 18, 26, 38, 50, 66, 82, 102, 122, 146, 170, 198, 226, 258, 290, 326, 362, 402, 442, 486, 530, 578, 626, 678, 730, 786, 842, 902, 962, 1026, 1090, 1158, 1226, 1298, 1370, 1446, 1522, 1602, 1682, 1766, 1850, 1938, 2026, 2118
Offset: 0

Views

Author

Paul Curtz, Oct 14 2014

Keywords

Comments

Numbers belonging to A016825: a(n) = A016825( A002620(n) ). - Bruno Berselli, Oct 15 2014
For n>1, a(n) is the number of row vectors of length 2n with entries in [1,n], first entry 1, with maximum inner distance. That is, vectors where the modular distance between adjacent entries is at least (n-2)/2. Modular distance is the minimum of remainders of (x - y) and (y - x) when dividing by n. Geometrically, this metric counts how far the integers mod n are from each other if 1 and n are adjacent as on a circle. - Omar Aceval Garcia, Jan 30 2021

Crossrefs

Programs

  • Magma
    [n^2+3/2+(-1)^n/2: n in [0..50]]; // Vincenzo Librandi, Oct 15 2014
    
  • Mathematica
    Table[n^2 + 3/2 + (-1)^n/2, {n, 0, 50}] (* Bruno Berselli, Oct 15 2014 *)
    CoefficientList[Series[2(x^3+x^2-x+1)/((1-x)^3 (x+1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2014 *)
    LinearRecurrence[{2,0,-2,1},{2,2,6,10},60] (* Harvey P. Dale, Apr 08 2019 *)
  • PARI
    Vec(-2*(x^3+x^2-x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Oct 15 2014
    
  • Sage
    [(2*n^2 +3 +(-1)^n)/2 for n in (0..50)] # G. C. Greubel, Dec 14 2021

Formula

a(n) = A000290(n) + A000034(n+1) = 4*A002620(n) + 2.
a(n+1) = 2*A080827(n+1) = (n+2)^2 - A042964(n+1) = a(n) + 2*n + 1 -(-1)^n.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Colin Barker, Oct 15 2014
G.f.: 2*(1-x+x^2+x^3) / ((1-x)^3*(x+1)). - Colin Barker, Oct 15 2014
E.g.f.: cosh(x) + (1 + x + x^2)*exp(x). - G. C. Greubel, Dec 14 2021
a(2n) = A005899(n) for n > 0, a(2n+1) = A069894(n). - Omar Aceval Garcia, Dec 30 2021

Extensions

Typo in data fixed by Colin Barker, Oct 15 2014

A284307 Permutation of the natural numbers partitioned into quadruples [4k-3, 4k, 4k-2, 4k-1], k > 0.

Original entry on oeis.org

1, 4, 2, 3, 5, 8, 6, 7, 9, 12, 10, 11, 13, 16, 14, 15, 17, 20, 18, 19, 21, 24, 22, 23, 25, 28, 26, 27, 29, 32, 30, 31, 33, 36, 34, 35, 37, 40, 38, 39, 41, 44, 42, 43, 45, 48, 46, 47, 49, 52, 50, 51, 53, 56, 54, 55, 57, 60, 58, 59, 61, 64, 62, 63, 65, 68, 66, 67
Offset: 1

Views

Author

Guenther Schrack, Mar 24 2017

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1, 2, 3, 4); swap the third and fourth element, then swap the second and third element; repeat for all quadruples.

Crossrefs

Inverse: A056699.
Subsequences:
elements with odd index: A042963(n), n > 0
elements with even index: A014601(A103889(n)), n > 0
odd elements: A005408(n-1), n > 0
indices of odd elements: A042948(n), n > 0
even elements: 2*A103889(n), n > 0
indices of even elements: A042964(n), n > 0
Sequence of fixed points: A016813(n-1), n > 0
Every fourth element starting at:
n=1: a(4n-3) = 4n-3 = A016813(n-1), n > 0
n=2: a(4n-2) = 4n = A008586(n), n > 0
n=3: a(4n-1) = 4n-2 = A016825(n-1), n > 0
n=4: a(4n) = 4n-1 = A004767(n-1), n > 0
Difference between pairs of elements:
a(2n+1)-a(2n-1) = A010684(n-1), n > 0
Compositions:
a(n) = A133256(A116966(n-1)), n > 0
a(A042948(n)) = A005408(n-1), n > 0
A067060(a(n)) = A092486(n), n > 0

Programs

  • MATLAB
    a = [1 4 2 3];
    max = (specify);
    for n = 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • Mathematica
    Table[n + ((-1)^n - (-1)^(n (n - 1)/2) (1 + 2 (-1)^n))/2, {n, 68}] (* Michael De Vlieger, Mar 28 2017 *)
    LinearRecurrence[{1,0,0,1,-1},{1,4,2,3,5},70] (* or *) {#[[1]],#[[4]], #[[2]],#[[3]]}&/@Partition[Range[70],4]//Flatten(* Harvey P. Dale, Sep 27 2017 *)
  • PARI
    for(n=1, 68, print1(n + ((-1)^n - (-1)^(n*(n - 1)/2)*(1 + 2*(-1)^n))/2,", ")) \\ Indranil Ghosh, Mar 29 2017

Formula

a(1)=1, a(2)=4, a(3)=2, a(4)=3, a(n) = a(n-4) + 4, n > 4.
O.g.f.: (x^4 + x^3 - 2*x^2 + 3x - 1)/(x^5 - x^4 - x + 1).
a(n) = n + ((-1)^n - (-1)^(n*(n-1)/2)*(1 + 2*(-1)^n))/2.
a(n) = n + (-1)^n*(1 - (-1)^(n*(n-1)/2) - (i^n - (-i)^n))/2.
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5), n > 5.
First differences, periodic: (3, -2, 1, 2), repeat.
a(n) = (2*n - 3*cos(n*Pi/2) + cos(n*Pi) + sin(n*Pi/2))/2. - Wesley Ivan Hurt, Apr 01 2017

A292576 Permutation of the natural numbers partitioned into quadruples [4k-1, 4k-3, 4k-2, 4k], k > 0.

Original entry on oeis.org

3, 1, 2, 4, 7, 5, 6, 8, 11, 9, 10, 12, 15, 13, 14, 16, 19, 17, 18, 20, 23, 21, 22, 24, 27, 25, 26, 28, 31, 29, 30, 32, 35, 33, 34, 36, 39, 37, 38, 40, 43, 41, 42, 44, 47, 45, 46, 48, 51, 49, 50, 52, 55, 53, 54, 56, 59, 57, 58, 60, 63, 61, 62
Offset: 1

Views

Author

Guenther Schrack, Sep 19 2017

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1,2,3,4); swap the second and third elements, then swap the first and the second element; repeat for all quadruples.

Crossrefs

Inverse: A056699(n+1) - 1 for n > 0.
Sequence of fixed points: A008586(n) for n > 0.
Subsequences:
elements with odd index: A042964(A103889(n)) for n > 0.
elements with even index: A042948(n) for n > 0.
odd elements: A166519(n) for n>0.
indices of odd elements: A042963(n) for n > 0.
even elements: A005843(n) for n>0.
indices of even elements: A014601(n) for n > 0.
Sum of pairs of elements:
a(n+2) + a(n) = A163980(n+1) = A168277(n+2) for n > 0.
Difference between pairs of elements:
a(n+2) - a(n) = (-1)^A011765(n+3)*A091084(n+1) for n > 0.
Compound relations:
a(n) = A284307(n+1) - 1 for n > 0.
a(n+2) - 2*a(n+1) + a(n) = (-1)^A011765(n)*A132400(n+1) for n > 0.
Compositions:
a(n) = A116966(A080412(n)) for n > 0.
a(A284307(n)) = A256008(n) for n > 0.
a(A042963(n)) = A166519(n-1) for n > 0.
A256008(a(n)) = A056699(n) for n > 0.

Programs

  • MATLAB
    a = [3 1 2 4]; % Generate b-file
    max = 10000;
    for n := 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • PARI
    for(n=1, 10000, print1(n + ((-1)^(n*(n-1)/2)*(2 - (-1)^n) - (-1)^n)/2, ", "))

Formula

a(1)=3, a(2)=1, a(3)=2, a(4)=4, a(n) = a(n-4) + 4 for n > 4.
O.g.f.: (2*x^3 + x^2 - 2*x + 3)/(x^5 - x^4 - x + 1).
a(n) = n + ((-1)^(n*(n-1)/2)*(2-(-1)^n) - (-1)^n)/2.
a(n) = n + (cos(n*Pi/2) - cos(n*Pi) + 3*sin(n*Pi/2))/2.
a(n) = n + n mod 2 + (ceiling(n/2)) mod 2 - 2*(floor(n/2) mod 2).
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
First Differences, periodic: (-2, 1, 2, 3), repeat; also (-1)^A130569(n)*A068073(n+2) for n > 0.

A301508 Expansion of Product_{k>=0} (1 + x^(4*k+2))*(1 + x^(4*k+3)).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 4, 4, 5, 5, 6, 7, 6, 8, 9, 9, 11, 12, 13, 14, 15, 17, 19, 20, 23, 25, 27, 29, 31, 35, 37, 40, 46, 48, 52, 57, 60, 66, 71, 76, 85, 90, 97, 105, 112, 121, 129, 140, 152, 161, 174, 187, 198, 214, 228, 245, 265, 280, 302, 323, 342
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 2 or 3 mod 4.

Examples

			a(13) = 3 because we have [11, 2], [10, 3] and [7, 6].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k + 2)) (1 + x^(4 k + 3)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[QPochhammer[-x^2, x^4] QPochhammer[-x^3, x^4], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{2, 3}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A042964(k)).
a(n) ~ exp(Pi*sqrt(n/6)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 23 2018

A053438 Expansion of (1+x+2*x^3)/((1-x)*(1-x^2)).

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35, 38, 39, 42, 43, 46, 47, 50, 51, 54, 55, 58, 59, 62, 63, 66, 67, 70, 71, 74, 75, 78, 79, 82, 83, 86, 87, 90, 91, 94, 95, 98, 99, 102, 103, 106, 107, 110, 111, 114, 115, 118, 119, 122
Offset: 0

Views

Author

N. J. A. Sloane, Jan 12 2000

Keywords

Crossrefs

Cf. A010684 (first differences), A263511 (partial sums).

Programs

  • Magma
    I:=[2,3,6]; [1] cat [n le 3 select I[n] else Self(n-1) +Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, May 26 2018
  • Maple
    A053438 := proc(n)
        if n > 0 then
            2*n -(1+(-1)^n)/2 ;
        else
            1 ;
        end if
    end proc:
    seq(A053438(n),n=0..30) ; # R. J. Mathar, Oct 27 2020
  • Mathematica
    CoefficientList[Series[(1+x+2*x^3)/((1-x)*(1-x^2)), {x, 0, 50}], x] (* or *) Join[{1}, LinearRecurrence[{1,1,-1}, {2,3,6}, 50]] (* G. C. Greubel, May 26 2018 *)
  • PARI
    a(n)=abs(n\2*4+n%2*3-1) \\ Charles R Greathouse IV, Dec 08 2011
    

Formula

a(n) = 2*n -(1+(-1)^n)/2 if n>=1. - Frank Ellermann, Feb 12 2002
a(n) = A042964(n), n>0. - R. J. Mathar, Oct 13 2008
a(n) = A014601(n) - 1 for n>0. - Hugo Pfoertner, Oct 26 2020

A174091 a(n) = n OR 2.

Original entry on oeis.org

2, 3, 2, 3, 6, 7, 6, 7, 10, 11, 10, 11, 14, 15, 14, 15, 18, 19, 18, 19, 22, 23, 22, 23, 26, 27, 26, 27, 30, 31, 30, 31, 34, 35, 34, 35, 38, 39, 38, 39, 42, 43, 42, 43, 46, 47, 46, 47, 50, 51, 50, 51, 54, 55, 54, 55, 58, 59, 58, 59, 62, 63, 62, 63, 66, 67, 66
Offset: 0

Views

Author

Gary Detlefs, Feb 06 2013

Keywords

Comments

OR(n, 2) + AND(n, 2) = n + 2.
OR(n, 2) - AND(n, 2) = n + 2*(-1)^floor(n/2), A004443.
a(n) = n when n = 2 or 3 mod 4 (n is in A042964). - Alonso del Arte, Feb 07 2013

Examples

			a(3) = 3 because OR(0011, 0010) = 0011 = 3.
a(4) = 6 because OR(0100, 0010) = 0110 = 6.
a(5) = 7 because OR(0101, 0010) = 0111 = 7.
		

Crossrefs

Cf. similar sequences listed in A244587.

Programs

Formula

a(n) = n + 1 + (-1)^floor(n/2).
G.f.: ( 2-x+x^3 ) / ( (1+x^2)*(x-1)^2 ). - R. J. Mathar, Feb 27 2013
Sum_{n>=0} (-1)^n/a(n) = Pi/4 - log(2)/2 = A196521. - Peter McNair, Aug 05 2023

A213928 Natural numbers placed in table T(n,k) layer by layer. The order of placement - at the beginning 2 layers counterclockwise, next 1 layer clockwise and so on. T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 4, 2, 5, 3, 9, 16, 6, 8, 10, 25, 15, 7, 11, 17, 26, 24, 14, 12, 18, 36, 49, 27, 23, 13, 19, 35, 37, 64, 48, 28, 22, 20, 34, 38, 50, 65, 63, 47, 29, 21, 33, 39, 51, 81, 100, 66, 62, 46, 30, 32, 40, 52, 80, 82, 121, 99, 67, 61, 45, 31, 41, 53, 79, 83, 101
Offset: 1

Views

Author

Boris Putievskiy, Mar 06 2013

Keywords

Comments

Permutation of the natural numbers. a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.In general, let b(z) be a sequence of integer numbers. Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Natural numbers placed in table T(n,k) layer by layer. The order of placement - layer is counterclockwise, if b(z) is odd; layer is clockwise if b(z) is even. T(n,k) read by antidiagonals.For A219159 - the order of the placement - at the beginning m layers counterclockwise, next m layers clockwise and so on - b(z)=floor((z-1)/m)+1. For this sequence b(z)=z^2 mod 3.

Examples

			The start of the sequence as table.
The direction of the placement denotes by ">" and  "v".
  ..........v...........v...........v
  >1....4...5..16..25..26..49..64..65...
  >2....3...6..15..24..27..48..63..66...
  .9....8...7..14..23..28..47..62..67...
  >10..11..12..13..22..29..46..61..68...
  >17..18..19..20..21..30..45..60..69...
  .36..35..34..33..32..31..44..59..70...
  >37..38..39..40..41..42..43..58..71...
  >50..51..52..53..54..55..56..57..72...
  .81..80..79..78..77..76..75..74..73...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  4,2;
  5,3,9;
  16,6,8,10;
  25,15,7,11,17;
  26,24,14,12,18,36;
  49,27,23,13,19,35,37;
  64,48,28,22,20,34,38,50;
  65,63,47,29,21,33,39,51,81;
  . . .
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if j>=i:
       result=((1+(-1)**(j**2%3-1))*(j**2-i+1)-(-1+(-1)**(j**2%3-1))*((j-1)**2 +i))/2
    else:
       result=((1+(-1)**(i**2%3))*(i**2-j+1)-(-1+(-1)**(i**2%3))*((i-1)**2 +j))/2

Formula

For general case.
As table
T(n,k) = ((1+(-1)^(b(k)-1))*(k^2-n+1)-(-1+(-1)^(b(k)-1))*((k-1)^2 +n))/2, if k >= n;
T(n,k) = ((1+(-1)^b(n))*(n^2-k+1)-(-1+(-1)^b(n))*((n-1)^2 +k))/2, if n >k.
As linear sequence
a(n) = ((1+(-1)^(b(j)-1))*(j^2-i+1)-(-1+(-1)^(b(j)-1))*((j-1)^2 +i))/2, if j >= i;
a(n) = ((1+(-1)^b(i))*(i^2-j+1)-(-1+(-1)^b(i))*((i-1)^2 +j))/2, if i >j;
where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
For this sequence b(z)=z^2 mod 3.
As table
T(n,k) = ((1+(-1)^(k^2 mod 3-1))*(k^2-n+1)-(-1+(-1)^(k^2 mod 3-1))*((k-1)^2 +n))/2, if k >= n;
T(n,k) = ((1+(-1)^(n^2 mod 3))*(n^2-k+1)-(-1+(-1)^(n^2 mod 3))*((n-1)^2 +k))/2, if n >k.
As linear sequence
a(n) = ((1+(-1)^(j^2 mod 3-1))*(j^2-i+1)-(-1+(-1)^(j^2 mod 3-1))*((j-1)^2 +i))/2, if j >= i;
a(n) = ((1+(-1)^(i^2 mod 3))*(i^2-j+1)-(-1+(-1)^(i^2 mod 3))*((i-1)^2 +j))/2, if i >j;
where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A214863 Numbers n such that n XOR 11 = n - 11.

Original entry on oeis.org

11, 15, 27, 31, 43, 47, 59, 63, 75, 79, 91, 95, 107, 111, 123, 127, 139, 143, 155, 159, 171, 175, 187, 191, 203, 207, 219, 223, 235, 239, 251, 255, 267, 271, 283, 287, 299, 303, 315, 319, 331, 335, 347, 351, 363
Offset: 1

Views

Author

Brad Clardy, Mar 09 2013

Keywords

Comments

Links to sequences of the form n XOR m = n - m are found below with the value of m specified.

Crossrefs

Cf. A005408 (m=1), A042964 (m=2), A131098 (m=3), A047566 (m=4), A047550 (m=5), A047589 (m=6), A004771 (m=7), A115419 (m=8), A214865 (m=9), A214864 (m=10), A133894 (m=12), A125169 (m=15).
Cf. also A016825, A168392.

Programs

  • Magma
    XOR := func;
    m:=11;
    for n in [1 .. 500] do
          if (XOR(n, m) eq n-m) then n; end if;
    end for;
  • Mathematica
    Select[Range[400],BitXor[#,11]==#-11&] (* or *) LinearRecurrence[{1,1,-1},{11,15,27},50] (* Harvey P. Dale, Jun 05 2021 *)

Formula

a(n)= 1+8*n-2*(-1)^n.
a(n)=A016825(n) + A168392(n) + for n>0.
G.f. x*(11+4*x+x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Mar 10 2013

A237989 Numbers m such that the numbers of primes, even positive integers and odd positive integers less than or equal to m are all odd.

Original entry on oeis.org

2, 6, 18, 26, 34, 42, 50, 70, 74, 78, 86, 98, 106, 110, 130, 138, 150, 158, 162, 170, 198, 214, 218, 222, 234, 238, 242, 246, 250, 258, 262, 270, 278, 286, 290, 310, 314, 334, 354, 358, 370, 382, 390, 394, 402, 406, 442, 450, 454, 462, 470, 474, 478, 490, 502
Offset: 1

Views

Author

Ivan N. Ianakiev, Feb 16 2014

Keywords

Examples

			A cubic die whose faces are marked with the numbers from 1 to 6 has odd number of sides marked with prime numbers (2, 3 and 5), even integers (2, 4 and 6) and odd integers (1, 3 and 5). Therefore, 6 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000, 4], OddQ[PrimePi[#]] &] (* Paolo Xausa, Jun 24 2024 *)
  • PARI
    isok(n) = (primepi(n) % 2) && ((n % 4) == 2); \\ Michel Marcus, Mar 12 2014

Formula

Intersection of A042963 (odd number of odd numbers), A042964 (odd number of even numbers), A057812 (odd number of primes). - Michel Marcus, Feb 26 2014

A298364 Permutation of the natural numbers partitioned into quadruples [4k-2, 4k-1, 4k-3, 4k] for k > 0.

Original entry on oeis.org

2, 3, 1, 4, 6, 7, 5, 8, 10, 11, 9, 12, 14, 15, 13, 16, 18, 19, 17, 20, 22, 23, 21, 24, 26, 27, 25, 28, 30, 31, 29, 32, 34, 35, 33, 36, 38, 39, 37, 40, 42, 43, 41, 44, 46, 47, 45, 48, 50, 51, 49, 52, 54, 55, 53, 56, 58, 59, 57, 60, 62, 63, 61, 64, 66, 67, 65
Offset: 1

Views

Author

Guenther Schrack, Jan 18 2018

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1,2,3,4); swap the first and second elements, then swap the second and third elements; repeat for all quadruples.

Crossrefs

Inverse: A292576.
Sequence of fixed points: A008586(n) for n > 0.
First differences: (-1)^floor(n^2/4)*A068073(n-1) for n > 0.
Subsequences:
elements with odd index: A042963(A103889(n)) for n > 0.
elements with even index A014601(n) for n > 0.
odd elements: A166519(n-1) for n > 0.
indices of odd elements: A042964(n) for n > 0.
even elements: A005843(n) for n > 0.
indices of even elements: A042948(n) for n > 0.
Other similar permutations: A116966, A284307, A292576.

Programs

  • MATLAB
    a = [2 3 1 4];
    max = 10000;    % Generation of b-file.
    for n := 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • Mathematica
    Nest[Append[#, #[[-4]] + 4] &, {2, 3, 1, 4}, 63] (* or *)
    Array[# + ((-1)^# + ((-1)^(# (# - 1)/2)) (1 - 2 (-1)^#))/2 &, 67] (* Michael De Vlieger, Jan 23 2018 *)
    LinearRecurrence[{1,0,0,1,-1},{2,3,1,4,6},70] (* Harvey P. Dale, Dec 12 2018 *)
  • PARI
    for(n=1, 100, print1(n + ((-1)^n + ((-1)^(n*(n-1)/2))*(1 - 2*(-1)^n))/2, ", "))

Formula

O.g.f.: (3*x^3 - 2*x^2 + x + 2)/(x^5 - x^4 - x - 1).
a(1) = 2, a(2) = 3, a(3) = 1, a(4) = 4, a(n) = a(n-4) + 4 for n > 4.
a(n) = n + ((-1)^n + ((-1)^(n*(n-1)/2))*(1 - 2*(-1)^n))/2.
a(n) = n + (cos(n*Pi) - cos(n*Pi/2) + 3*sin(n*Pi/2))/2.
a(n) = 2*floor((n+1)/2) - 4*floor((n+1)/4) + floor(n/2) + 2*floor(n/4).
a(n) = n + (-1)^floor((n-1)^2/4)*A140081(n) for n > 0.
a(n) = A056699(n+1) - 1, n > 0.
a(n+2) = A168269(n+1) - a(n), n > 0.
a(n+2) = a(n) + (-1)^floor((n+1)^2/4)*A132400(n+2) for n > 0.
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
First differences: periodic, (1, -2, 3, 2) repeat.
Compositions:
a(n) = A080412(A116966(n-1)) for n > 0.
a(n) = A284307(A256008(n)) for n > 0.
a(A067060(n)) = A133256(n) for n > 0.
A116966(a(n+1)-1) = A092486(n) for n >= 0.
A056699(a(n)) = A256008(n) for n > 0.
Previous Showing 21-30 of 34 results. Next