A066275
Number of endofunctions of [n] such that some element is fixed, but 1 is not fixed.
Original entry on oeis.org
0, 1, 10, 111, 1476, 23255, 425958, 8915263, 210156040, 5513215599, 159374246010, 5034663700847, 172583816090700, 6380915666604583, 253132868797656526, 10725414213389814015, 483431164831317069840
Offset: 1
A085529
a(n) = (2n+1)^(2n+1).
Original entry on oeis.org
1, 27, 3125, 823543, 387420489, 285311670611, 302875106592253, 437893890380859375, 827240261886336764177, 1978419655660313589123979, 5842587018385982521381124421, 20880467999847912034355032910567, 88817841970012523233890533447265625, 443426488243037769948249630619149892803
Offset: 0
Cf.
A000312,
A005408,
A016754,
A085527,
A085528,
A085530,
A085531,
A085532,
A085533,
A085534,
A085535.
A174551
Triangular array T(n,k): functions f:{1,2,...,n}-> {1,2,...,n} such that each of k fixed (but arbitrary) elements are in the image of f.
Original entry on oeis.org
1, 1, 1, 4, 3, 2, 27, 19, 12, 6, 256, 175, 110, 60, 24, 3125, 2101, 1320, 750, 360, 120, 46656, 31031, 19502, 11340, 5880, 2520, 720, 823543, 543607, 341796, 201726, 109200, 52080, 20160, 5040, 16777216, 11012415, 6927230, 4131036, 2298744, 1164240, 514080, 181440, 40320
Offset: 0
Letting the k arbitrary elements be {1,2}, T(3,2) = 12 because there are 12 such functions from [3] into [3]. {1, 1, 2}, {1, 2, 1}, {1, 2, 2}, {1, 2, 3}, {1, 3, 2}, {2, 1, 1}, {2,1, 2}, {2, 1, 3}, {2, 2, 1}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}.
The triangle begins:
1;
1, 1;
4, 3, 2;
27, 19, 12, 6;
256, 175, 110, 60, 24;
3125, 2101, 1320, 750, 360, 120;
46656, 31031, 19502, 11340, 5880, 2520, 720;
823543, 543607, 341796, 201726, 109200, 52080, 20160, 5040;
-
T:= (n,k)-> add((-1)^i*binomial(k, i)*(n-i)^n, i=0..k):
seq(seq(T(n,k), k=0..n), n=0..10); # Alois P. Heinz, Dec 26 2012
-
Table[Table[ Sum[(-1)^i Binomial[k, i] (n - i)^n, {i, 0, k}], {k, 0, n}], {n, 0, 7}] // Grid
A281595
a(n) = (n^n - 3*(n-1)^n + 3*(n-2)^n - (n-3)^n)/6.
Original entry on oeis.org
0, 0, 0, 1, 10, 125, 1890, 33621, 688506, 15958405, 413066170, 11810819141, 369730963602, 12577271147805, 461980538087250, 18223376862518101, 768327068469302218, 34480595937671194805, 1641060381277816308810, 82562177153973368528901, 4378026144983797903473954
Offset: 0
-
a := n -> (n^n-3*(n-1)^n+3*(n-2)^n-(n-3)^n)/6:
seq(a(n), n=0..20);
-
A281595[n_] := If[n == 0, 0, (n^n - 3*(n-1)^n + 3*(n-2)^n - (n-3)^n)/6];
Array[A281595, 25, 0] (* Paolo Xausa, Jul 10 2024 *)
A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A350454
Number T(n,k) of endofunctions on [n] with exactly k fixed points, none of which are isolated; triangle T(n,k), n >= 0, 0 <= k <= n/2, read by rows.
Original entry on oeis.org
1, 0, 1, 2, 8, 9, 81, 76, 12, 1024, 875, 180, 15625, 12606, 2910, 120, 279936, 217217, 53550, 3780, 5764801, 4348856, 1118936, 102480, 1680, 134217728, 99111735, 26280072, 2817360, 90720, 3486784401, 2532027610, 686569050, 81864720, 3729600, 30240
Offset: 0
Triangle T(n,k) begins:
1;
0;
1, 2;
8, 9;
81, 76, 12;
1024, 875, 180;
15625, 12606, 2910, 120;
279936, 217217, 53550, 3780;
5764801, 4348856, 1118936, 102480, 1680;
134217728, 99111735, 26280072, 2817360, 90720;
3486784401, 2532027610, 686569050, 81864720, 3729600, 30240;
...
-
c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
t:= proc(n) option remember; n^(n-1) end:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
binomial(n-1, i-1)*(c(i)+`if`(i=1, 0, x*t(i))), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..12);
# second Maple program:
egf := k-> exp(LambertW(-x))*(-x-LambertW(-x))^k/((1+LambertW(-x))*k!):
A350454 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A350454(n, k), k=0..n/2)), n=0..9); # Mélika Tebni, Nov 22 2022
-
c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
t[n_] := t[n] = n^(n - 1);
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - i]*
Binomial[n - 1, i - 1]*(c[i] + If[i == 1, 0, x*t[i]]), {i, 1, n}]]];
T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)
A048743
Triangle a(n,k) = k!*C(n-1,k-1)*Stirling_2(n,k), 1<=k<=n.
Original entry on oeis.org
1, 1, 2, 1, 12, 6, 1, 42, 108, 24, 1, 120, 900, 960, 120, 1, 310, 5400, 15600, 9000, 720, 1, 756, 27090, 168000, 252000, 90720, 5040, 1, 1778, 121716, 1428840, 4410000, 4021920, 987840, 40320, 1, 4080, 508200, 10442880, 58388400, 106686720
Offset: 1
The 3rd row is formed from [ 1,2,6,24 ]*[ 1,3,3,1 ]*[ 1,7,6,1 ] => [ 1,42,108,24 ].
1;
1,2;
1,12,6;
1,42,108,24;
1,120,900,960,120;
-
A048743 := proc(n,k) k!*binomial(n-1,k-1)*combinat[stirling2](n,k) ; end proc:
seq(seq(A048743(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Aug 30 2011
-
Flatten[Table[k!Binomial[n-1,k-1]StirlingS2[n,k],{n,10},{k,n}]] (* Harvey P. Dale, Feb 21 2013 *)
A091884
Triangle of numbers defined by Knuth.
Original entry on oeis.org
1, 1, 1, 4, 3, 3, 27, 19, 20, 20, 256, 175, 191, 190, 190, 3125, 2101, 2344, 2312, 2313, 2313, 46656, 31031, 35127, 34398, 34462, 34461, 34461, 823543, 543607, 621732, 605348, 607535, 607407, 607408, 607408, 16777216, 11012415, 12692031, 12301406, 12366942, 12360381, 12360637, 12360636, 12360636
Offset: 0
Triangle begins:
1;
1, 1;
4, 3, 3;
27, 19, 20, 20;
256, 175, 191, 190, 190;
3125, 2101, 2344, 2312, 2313, 2313;
...
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 6.4 Answer to Exer. 46.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
-
T(n,k)=if(k<0 || k>n,0,sum(j=0,k,(-1)^j*(n-j)^n))
A085283
a(n) = n*n^n - (n-1)*(n-1)^n.
Original entry on oeis.org
1, 1, 7, 65, 781, 11529, 201811, 4085185, 93864121, 2413042577, 68618940391, 2138428376721, 72470493235141, 2653457921150425, 104382202543721467, 4390455017903519489, 196621779843659466481, 9340717969198079777313
Offset: 0
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- BBC, The Monkey and the Coconuts
- K. Belcourt, How Many Coconuts
- Santo D'Agostino, "The Coconut Problem"; Updated With Solution, May 2011.
- J. Dean, Sailors, monkey and coconuts
- A. K. Dewdney, The Monkey and the Coconuts
- G. Lewandrowski, The Monkey Problem
- R. Raja, Monkeys and Coconuts
- A. Rishi, Nemo's sailors and the monkey
- Dr. Rob, The MathForum, Coconut piles
- D. J. Wright, Five Pirates and a Monkey
-
Join[{1},Table[n*n^n-(n-1)(n-1)^n,{n,20}]] (* Harvey P. Dale, Sep 08 2016 *)
A348154
Number of inequivalent strip arrangements.
Original entry on oeis.org
1, 3, 11, 100, 1063, 15686, 271975, 5509456, 126604661, 3256687324, 92655915831, 2888838414540, 97940953019995, 3587315304010374, 141162897496953263, 5939167862427259456, 266046178356979847881, 12641661811772879875640, 635092155152649300232063, 33633813271235206436451100
Offset: 1
Cf.
A045531 (when rotations are considered distinct).
Comments