cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A066275 Number of endofunctions of [n] such that some element is fixed, but 1 is not fixed.

Original entry on oeis.org

0, 1, 10, 111, 1476, 23255, 425958, 8915263, 210156040, 5513215599, 159374246010, 5034663700847, 172583816090700, 6380915666604583, 253132868797656526, 10725414213389814015, 483431164831317069840
Offset: 1

Views

Author

Len Smiley, Dec 09 2001

Keywords

Examples

			a(2)=1: [1->2,2->2].
		

Crossrefs

Programs

Formula

a(n) = n^n-n^(n-1)-(n-1)^n. E.g.f.: (T^3-T^2+T-x)/(T-T^2), where T=T(x) is Euler's tree function (see A000169).

A085529 a(n) = (2n+1)^(2n+1).

Original entry on oeis.org

1, 27, 3125, 823543, 387420489, 285311670611, 302875106592253, 437893890380859375, 827240261886336764177, 1978419655660313589123979, 5842587018385982521381124421, 20880467999847912034355032910567, 88817841970012523233890533447265625, 443426488243037769948249630619149892803
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2003

Keywords

Comments

a(n) == 2*n + 1 (mod 24). - Mathew Englander, Aug 16 2020

Crossrefs

Programs

Formula

From Mathew Englander, Aug 16 2020: (Start)
a(n) = A000312(2*n + 1).
a(n) = A016754(n)^n * (2*n + 1).
a(n) = A085527(n)^2 * (2*n + 1).
a(n) = A085528(n)^2 / (2*n + 1).
a(n) = A085530(n) * A005408(n).
a(n) = A085531(n) * A016754(n).
a(n) = A085532(n)^2 - A215265(2*n + 1).
a(n) = A085533(n) + A045531(2*n + 1).
a(n) = A085534(n+1) - A007781(2*n + 1).
a(n) = A085535(n+1) - A055869(2*n + 1).
(End)
Sum_{n>=0} 1/a(n) = (A073009 + A083648)/2 = 1.0373582538... . - Amiram Eldar, May 17 2022

A174551 Triangular array T(n,k): functions f:{1,2,...,n}-> {1,2,...,n} such that each of k fixed (but arbitrary) elements are in the image of f.

Original entry on oeis.org

1, 1, 1, 4, 3, 2, 27, 19, 12, 6, 256, 175, 110, 60, 24, 3125, 2101, 1320, 750, 360, 120, 46656, 31031, 19502, 11340, 5880, 2520, 720, 823543, 543607, 341796, 201726, 109200, 52080, 20160, 5040, 16777216, 11012415, 6927230, 4131036, 2298744, 1164240, 514080, 181440, 40320
Offset: 0

Views

Author

Geoffrey Critzer, Mar 22 2010

Keywords

Examples

			Letting the k arbitrary elements be {1,2}, T(3,2) = 12 because there are 12 such functions from [3] into [3]. {1, 1, 2}, {1, 2, 1}, {1, 2, 2}, {1, 2, 3}, {1, 3, 2}, {2, 1, 1}, {2,1, 2}, {2, 1, 3}, {2, 2, 1}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}.
The triangle begins:
1;
1, 1;
4, 3, 2;
27, 19, 12, 6;
256, 175, 110, 60, 24;
3125, 2101, 1320, 750, 360, 120;
46656, 31031, 19502, 11340, 5880, 2520, 720;
823543, 543607, 341796, 201726, 109200, 52080, 20160, 5040;
		

Crossrefs

Programs

  • Maple
    T:= (n,k)-> add((-1)^i*binomial(k, i)*(n-i)^n, i=0..k):
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Dec 26 2012
  • Mathematica
    Table[Table[ Sum[(-1)^i Binomial[k, i] (n - i)^n, {i, 0, k}], {k, 0, n}], {n, 0, 7}] // Grid

Formula

T(n,k) = Sum_{i=0..k} (-1)^i C(k,i) (n-i)^n; T(n,0) = n^n; T(n,n) = n!.

A281595 a(n) = (n^n - 3*(n-1)^n + 3*(n-2)^n - (n-3)^n)/6.

Original entry on oeis.org

0, 0, 0, 1, 10, 125, 1890, 33621, 688506, 15958405, 413066170, 11810819141, 369730963602, 12577271147805, 461980538087250, 18223376862518101, 768327068469302218, 34480595937671194805, 1641060381277816308810, 82562177153973368528901, 4378026144983797903473954
Offset: 0

Views

Author

Peter Luschny, Jan 26 2017

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (n^n-3*(n-1)^n+3*(n-2)^n-(n-3)^n)/6:
    seq(a(n), n=0..20);
  • Mathematica
    A281595[n_] := If[n == 0, 0, (n^n - 3*(n-1)^n + 3*(n-2)^n - (n-3)^n)/6];
    Array[A281595, 25, 0] (* Paolo Xausa, Jul 10 2024 *)

A343237 Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 10 2021

Keywords

Comments

This is the row reversed version of the triangle A047969(n, m). The corresponding array A047969 is a(n, k) = A(k, n) (transposed of array A).
A(n-1, k-1) = k^n - (k-1)^n gives the number of n-digit numbers with digits from K = {1, 2, 3, ..., k} such that any digit from K, say k, appears at least once. Motivated by a comment in A005061 by Enrique Navarrete, the instance k=4 for n >= 1 (the column 3 in array A), and the d = 3 (sub)-diagonal sequence of T for m >= 0.

Examples

			The array A begins:
n\k  0  1   2    3     4     5     6      7      8      9 ...
-------------------------------------------------------------
0:   1  1   1    1     1     1     1      1      1      1 ...
1:   1  3   5    7     9    11    13     15     17     19 ...
2:   1  7  19   37    61    91   127    169    217    271 ...
3:   1 15  65  175   369   671  1105   1695   2465   3439 ...
4:   1 31 211  781  2101  4651  9031  15961  26281  40951 ...
5:   1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m   0    1     2     3     4     5    6    7   8  9 10 ...
-------------------------------------------------------------
0:    1
1:    1    1
2:    1    3     1
3:    1    7     5     1
4:    1   15    19     7     1
5:    1   31    65    37     9     1
6:    1   63   211   175    61    11    1
7:    1  127   665   781   369    91   13    1
8:    1  255  2059  3367  2101   671  127   15   1
9:    1  511  6305 14197 11529  4651 1105  169  17  1
10:   1 1023 19171 58975 61741 31031 9031 1695 217 19  1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is,  3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4):  144, 414, 441;  244, 424, 442;  344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
		

Crossrefs

Cf. A005061, A008292, A047969 (reversed), A045531 (central diagonal), A047970 (row sums of triangle).
Row sequences of array A (nexus numbers): A000012, A005408, A003215, A005917(k+1), A022521, A022522, A022523, A022524, A022525, A022526, A022527, A022528.
Column sequences of array A: A000012, A000225(n+1), A001047(n+1), A005061(n+1), A005060(n+1), A005062(n+1), A016169(n+1), A016177(n+1), A016185(n+1), A016189(n+1), A016195(n+1), A016197(n+1).

Programs

  • Maple
    egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
    cx := n -> series(n!*coeff(ser, x, n), y, 12):
    Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
    for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
  • Mathematica
    A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)

Formula

Array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0.
A(n-1, k-1) = Sum_{j=1} binomial(n, j)*(k-1)^(n-j) = Sum_{j=0} binomial(n, j)*(k-1)^(n-j) - (k-1)^n = (1+(k-1))^n - (k-1)^n = k^n - (k-1)^n (from the combinatorial comment on A(n-1, k-1) above).
O.g.f. row n of array A: RA(n, x) = P(n, x)/(1 - x)^n, with P(n, x) = Sum_{m=0..n} A008292(n+1, m+1)*x^m, (the Eulerian number triangle A008292 has offset 1) for n >= 0. (See the Oct 26 2008 comment in A047969 by Peter Bala). RA(n, x) = polylog(-(n+1), x)*(1-x)/x. (For P(n, x) see the formula by Vladeta Jovovic, Sep 02 2002.)
E.g.f. of e.g.f.s of the rows of array A: EE(x, y) = exp(x)*(1 + y*(exp(x) - 1))*exp(y*exp(x)), that is A(n, k) = [y^k/k!][x^n/n!] EE(x, y).
Triangle T(n, m) = A(n-m, m) = (m+1)^(n-m+1) - m^(n-m+1), n >= 0, m = 0, 1, ..., n.
E.g.f.: -(exp(x)-1)/(x*exp(x)*y-x). - Vladimir Kruchinin, Nov 02 2022

A350454 Number T(n,k) of endofunctions on [n] with exactly k fixed points, none of which are isolated; triangle T(n,k), n >= 0, 0 <= k <= n/2, read by rows.

Original entry on oeis.org

1, 0, 1, 2, 8, 9, 81, 76, 12, 1024, 875, 180, 15625, 12606, 2910, 120, 279936, 217217, 53550, 3780, 5764801, 4348856, 1118936, 102480, 1680, 134217728, 99111735, 26280072, 2817360, 90720, 3486784401, 2532027610, 686569050, 81864720, 3729600, 30240
Offset: 0

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Examples

			Triangle T(n,k) begins:
           1;
           0;
           1,          2;
           8,          9;
          81,         76,        12;
        1024,        875,       180;
       15625,      12606,      2910,      120;
      279936,     217217,     53550,     3780;
     5764801,    4348856,   1118936,   102480,    1680;
   134217728,   99111735,  26280072,  2817360,   90720;
  3486784401, 2532027610, 686569050, 81864720, 3729600, 30240;
  ...
		

Crossrefs

Column k=0 gives A065440.
Row sums give |A069856|.
T(2n,n) gives A001813.
Cf. A349454.

Programs

  • Maple
    c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
    t:= proc(n) option remember; n^(n-1) end:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
          binomial(n-1, i-1)*(c(i)+`if`(i=1, 0, x*t(i))), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);
    # second Maple program:
    egf := k-> exp(LambertW(-x))*(-x-LambertW(-x))^k/((1+LambertW(-x))*k!):
    A350454 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A350454(n, k), k=0..n/2)), n=0..9); # Mélika Tebni, Nov 22 2022
  • Mathematica
    c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
    t[n_] := t[n] = n^(n - 1);
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - i]*
         Binomial[n - 1, i - 1]*(c[i] + If[i == 1, 0, x*t[i]]), {i, 1, n}]]];
    T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)

Formula

E.g.f. column k: exp(W(-x))*(-x - W(-x))^k / ((1 + W(-x))*k!), W(x) the Lambert W-function. - Mélika Tebni, Nov 22 2022
From Mélika Tebni, Dec 22 2022: (Start)
For n > 1, T(n,1) = n*A045531(n-1).
Sum_{k=0..n} (-1)^(n-k)*T(n+k,k) = 2^n.
Sum_{k=0..n} (-1)^(n-k)*T(n+k,k)/(n+k-1) = 1/n, for n > 1. (End)

A048743 Triangle a(n,k) = k!*C(n-1,k-1)*Stirling_2(n,k), 1<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 12, 6, 1, 42, 108, 24, 1, 120, 900, 960, 120, 1, 310, 5400, 15600, 9000, 720, 1, 756, 27090, 168000, 252000, 90720, 5040, 1, 1778, 121716, 1428840, 4410000, 4021920, 987840, 40320, 1, 4080, 508200, 10442880, 58388400, 106686720
Offset: 1

Views

Author

Keywords

Examples

			The 3rd row is formed from [ 1,2,6,24 ]*[ 1,3,3,1 ]*[ 1,7,6,1 ] => [ 1,42,108,24 ].
1;
1,2;
1,12,6;
1,42,108,24;
1,120,900,960,120;
		

Crossrefs

Cf. A007318, A008277. Row sums give A045531.

Programs

  • Maple
    A048743 := proc(n,k) k!*binomial(n-1,k-1)*combinat[stirling2](n,k) ; end proc:
    seq(seq(A048743(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Aug 30 2011
  • Mathematica
    Flatten[Table[k!Binomial[n-1,k-1]StirlingS2[n,k],{n,10},{k,n}]] (* Harvey P. Dale, Feb 21 2013 *)

Extensions

More terms from James Sellers, Apr 22 2000

A091884 Triangle of numbers defined by Knuth.

Original entry on oeis.org

1, 1, 1, 4, 3, 3, 27, 19, 20, 20, 256, 175, 191, 190, 190, 3125, 2101, 2344, 2312, 2313, 2313, 46656, 31031, 35127, 34398, 34462, 34461, 34461, 823543, 543607, 621732, 605348, 607535, 607407, 607408, 607408, 16777216, 11012415, 12692031, 12301406, 12366942, 12360381, 12360637, 12360636, 12360636
Offset: 0

Views

Author

Michael Somos, Feb 08 2004

Keywords

Examples

			Triangle begins:
     1;
     1,    1;
     4,    3,    3;
    27,   19,   20,   20;
   256,  175,  191,  190,  190;
  3125, 2101, 2344, 2312, 2313, 2313;
  ...
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 6.4 Answer to Exer. 46.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.

Crossrefs

Column k=0..1 give A000312, A045531.
Main diagonal gives A120485.

Programs

  • PARI
    T(n,k)=if(k<0 || k>n,0,sum(j=0,k,(-1)^j*(n-j)^n))

Formula

T(n,k) = Sum_{j=0..k} (-1)^j * (n-j)^n.

A085283 a(n) = n*n^n - (n-1)*(n-1)^n.

Original entry on oeis.org

1, 1, 7, 65, 781, 11529, 201811, 4085185, 93864121, 2413042577, 68618940391, 2138428376721, 72470493235141, 2653457921150425, 104382202543721467, 4390455017903519489, 196621779843659466481, 9340717969198079777313
Offset: 0

Views

Author

Paul Barry, Jun 26 2003

Keywords

Comments

The system of equations
x(0) = n*x(1) + 1,
(n-1)*x(1) = n*x(2) + 1,
...
(n-1)*x(n) = n*x(n+1) + 1.
relates to the Monkey-And-Coconuts problem and reduces to the single equation
A007778(n-1)*x(0) = A007778(n)*x(n+1) + a(n),
whose solutions {x(0),x(n+1)} are given by {A014293(n), A085606(n)=A007778(n-1) - 1}. - Lekraj Beedassy, Jul 15 2003
For n >= 1, a(n) is equal to the number of functions f: {1,2,...,n+1}->{1,2,...,n} such that Im(f) contains a fixed element. - Aleksandar M. Janjic and Milan Janjic, Feb 27 2007

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[n*n^n-(n-1)(n-1)^n,{n,20}]] (* Harvey P. Dale, Sep 08 2016 *)

Formula

E.g.f.: -(x + 2*x*W(-x) + W(-x)^2)/(W(-x)*(1 + W(-x))^3), where W(x) is the Lambert W function. - Fabian Pereyra, Sep 26 2023

A348154 Number of inequivalent strip arrangements.

Original entry on oeis.org

1, 3, 11, 100, 1063, 15686, 271975, 5509456, 126604661, 3256687324, 92655915831, 2888838414540, 97940953019995, 3587315304010374, 141162897496953263, 5939167862427259456, 266046178356979847881, 12641661811772879875640, 635092155152649300232063, 33633813271235206436451100
Offset: 1

Views

Author

Joseph Rozhenko, Oct 04 2021

Keywords

Comments

Given n strips, each of length n squares (dimensions 1 X n), a(n) is the number of distinct shapes that can be created by setting the strips side by side while satisfying the condition that the shape must include at least one row of length L=n squares (row considered to be a direction measured perpendicular to the strips). Shapes differing only by a rotation are considered to be equivalent.

Crossrefs

Cf. A045531 (when rotations are considered distinct).

Programs

  • PARI
    a(n) = (n^n - (n-1)^n + n^(n\2) + !(n%2)*(n-1)^(n\2))/2; \\ Jinyuan Wang, Oct 08 2021

Formula

From Jinyuan Wang, Oct 08 2021: (Start)
a(2*k+1) = ((2*k+1)^(2*k+1) - (2*k)^(2*k+1) + (2*k+1)^k) / 2.
a(2*k) = ((2*k)^(2*k) - (2*k-1)^(2*k) + (2*k)^k + (2*k-1)^k) / 2.
(End)

Extensions

More terms from Jinyuan Wang, Oct 08 2021
Previous Showing 11-20 of 23 results. Next