cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A156543 Multiplicative closure of primes that are not Sophie Germain primes (A053176).

Original entry on oeis.org

1, 7, 13, 17, 19, 31, 37, 43, 47, 49, 59, 61, 67, 71, 73, 79, 91, 97, 101, 103, 107, 109, 119, 127, 133, 137, 139, 149, 151, 157, 163, 167, 169, 181, 193, 197, 199, 211, 217, 221, 223, 227, 229, 241, 247, 257, 259, 263, 269, 271, 277, 283, 289, 301, 307, 311
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 09 2009

Keywords

Comments

a(n) mod 6 = 1 or = 5; subsequence of A007310;
A156542(a(n)) = 0;
A045979 is a subsequence.

Crossrefs

A202318 Let (n)_p denote the exponent of prime p in the prime power factorization of n. Then a(n) is defined by the formulas a(1)=1; for n >= 2, (a(n))_2 = (n)_2, (a(n))_3 = (n)_3 and, for p >= 5, (a(n))_p = 1 + ((2n)/(p-1))_p if p-1|2*n, and (a(n))_p = 0 otherwise.

Original entry on oeis.org

1, 10, 21, 20, 11, 2730, 1, 680, 1197, 550, 23, 5460, 1, 290, 7161, 1360, 1, 5757570, 1, 45100, 6321, 230, 47, 185640, 11, 530, 3591, 580, 59, 283933650, 1, 2720, 32361, 10, 781, 840605220, 1, 10, 1659, 1533400, 83, 23830170, 1, 40940, 408177, 470, 1, 36014160, 1, 277750, 2163, 1060, 107, 1882725390
Offset: 1

Views

Author

Keywords

Comments

a(n)=1 iff n has form 6n+-1 and, if d >= 5 is a divisor of n, then 2*d+1 is not prime. The places of 1's form sequence A045979.
If p is an odd prime and p^n is the side length of the odd leg of a primitive Pythagorean triangle (PPT) it constrains the other leg and hypotenuse to be (p^(2n)-1)/2 and (p^(2n)+1)/2 and the area to be (p^n-1)p^n(p^n+1)/4. Now consider the term (p^n-1)p^n(p^n+1): it must at least be divisible by 24 for all odd primes p because the area of a PPT is divisible by 6 (see A127922 for n=1). a(n) equals the common divisor of the term (p^n-1)p^n(p^n+1)/24 for all odd primes p. - Frank M Jackson, Dec 09 2017

Examples

			Let n=6. Since 2*6+1=13 is prime, the max p that should be considered is 13. We have
  (a(6))_2  = (a(6))_3 = 1,
  (a(6))_5  = (12/4)_5 + 1 = 1,
  (a(6))_7  = (12/6)_7 + 1 = 1,
  (a(6))_13 = (12/12)_13 + 1 = 1.
Thus a(6) = 2*3*5*7*13 = 2730.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Exp[Re[Limit[Zeta[s] (Zeta[-1]^(s - 1) - Zeta[-(2*n - 1)]^(s - 1)), s -> 1]]]], {n, 1, 54}] (* Mats Granvik, Feb 05 2016 *)
    Table[(lst=Table[p=Prime[m+1]; (p^n-1)p^n(p^n+1), {m, 1, 10}]; GCD@@lst/24), {n, 1, 100}] (* Frank M Jackson, Dec 09 2017 *)
    a[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}]; Array[a[2#+1]/(24 a[2#-1]) &, 100] (* using Jean-François Alcover's program A053657 *)(* Frank M Jackson, Dec 16 2017 *)
  • PARI
    a(n) = {my(r = 1); forprime(p=2, 2*n+1, if (p<=3, r *= p^valuation(n, p), if (! (2*n % (p-1)), r *= p^(1+valuation((2*n)/(p-1), p))););); r;} \\ Michel Marcus, Feb 06 2016

Formula

a(n) = (1/24)*b(2n+1)/b(2n-1), where b(n) = A053657(n).
a(p) = A002445(p)/6, for prime p >= 5.
a(n) = numerator of e^(real(lim_{s -> 1} (zeta(s)*(zeta(-1)^(s-1) - zeta(-(2*n-1))^(s-1))))). - Mats Granvik, Feb 05 2016
a(n) = A036283(n)/6. - Hugo Pfoertner, Dec 18 2022

A067656 Numbers n such that n!*B(2n) is an integer, where B(2n) are the Bernoulli numbers.

Original entry on oeis.org

7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, 55, 57, 59, 61, 62, 64, 67, 71, 73, 76, 77, 79, 80, 84, 85, 87, 91, 92, 93, 94, 97, 101, 103, 104, 107, 109, 110, 115, 117, 118, 121, 122, 123, 124, 127, 129, 132, 133, 137, 139, 142, 143, 144, 145, 147
Offset: 1

Views

Author

Benoit Cloitre, Feb 03 2002

Keywords

Comments

A045979(n), Bernoulli numbers with denominators 6, are included in the sequence.
Also numbers n such that both n+1 and 2n+1 are not prime. - Alexander Adamchuk, Oct 05 2006

Crossrefs

Cf. A166602. - R. J. Mathar, Feb 14 2010

Programs

  • Mathematica
    Select[Range[2,1000],Numerator[ #(#+1)(2#+1)/6/#!^2]==1&] (* Alexander Adamchuk, Oct 05 2006 *)
    Select[Range[1000],!PrimeQ[ #+1]&&!PrimeQ[2#+1]&] (* Alexander Adamchuk, Oct 05 2006 *)

Formula

Also numbers n>1 such that A000330[n] = Sum[k^2,{k,1,n}] = n(n+1)(2n+1)/6 divides A001044[n] = Product[k^2,{k,1,n}] = (n!)^2. Also numbers n>1 such that Numerator[n(n+1)(2n+1)/6 /(n!)^2] = 1. - Alexander Adamchuk, Oct 05 2006

A081863 Largest integer m such that m divides (sigma_(2n+1)(2k-1)-sigma(2k-1)) for all k>=1.

Original entry on oeis.org

24, 240, 168, 480, 264, 21840, 24, 16320, 3192, 2640, 552, 43680, 24, 6960, 57288, 32640, 24, 15353520, 24, 216480, 7224, 5520, 1128, 1485120, 264, 12720, 3192, 13920, 1416, 454293840, 24, 65280, 258888, 240, 18744, 2241613920, 24, 240, 13272, 7360320, 1992
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

a(n)==0 mod 24. It seems that a(n)==0 (mod 2n+1) if and only if 2n+1 is an odd prime.
It appears that a(n)=24 for n in A045979, a(n)=168 for n in A051227, a(n)=264 for n in A051229, and a(n)=240 or 480 if n is in A051225. - Michel Marcus, Dec 07 2013

Crossrefs

Cf. A000203.

Programs

  • PARI
    ds(n, k) = sigma(2*k-1, 2*n+1) - sigma(2*k-1);
    a(n) = {my(m = ds(n, 1)); for (k=2, 100, m = gcd(m, ds(n, k));); m;} \\ Script computes gcd of 100 terms; for current data, 10 terms are actually sufficient; is there a better way? - Michel Marcus, Dec 07 2013

Extensions

a(12) corrected and more terms from Michel Marcus, Dec 07 2013

A114648 Number of occurrences of 6 as a denominator in Bernoulli(k) for 0<=k<=10^n.

Original entry on oeis.org

0, 1, 10, 87, 834, 7992, 77696, 758582, 7436825, 73129588, 720726912
Offset: 0

Views

Author

Eric W. Weisstein, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    DenominatorBernoulliBQ[n_Integer, denom_Integer] := If[EvenQ[n], Times @@ Select[Divisors[n] + 1, PrimeQ] == denom, 1 + KroneckerDelta[n, 1] == denom]; A114648[n_] := A114648[n] = Length[Select[Range[10^n], DenominatorBernoulliBQ[#, 6] &]] (* Enrique Pérez Herrero, Aug 01 2010 *)

Extensions

More terms added by Enrique Pérez Herrero, Aug 01 2010
More terms from Enrique Pérez Herrero, Aug 16 2010
a(10) from Arkadiusz Wesolowski, Dec 02 2012

A090863 Numbers n such that F(n+1)*F(n-1)*B(2n) is an integer, where F(k)=k-th Fibonacci number and B(2k)=2k-th Bernoulli number.

Original entry on oeis.org

1, 7, 13, 17, 19, 31, 37, 43, 47, 49, 59, 61, 67, 71, 73, 79, 91, 97, 101, 103, 107, 109, 121, 127, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169, 181, 193, 197, 199, 211, 217, 223, 227, 229, 241, 247, 257, 259, 263, 269, 271, 277, 283, 289
Offset: 1

Views

Author

Benoit Cloitre, Feb 12 2004

Keywords

Comments

Differs from A045979 for some terms. Contains A053176.

A272383 Numbers n such that Bernoulli number B_{n} has denominator 3318.

Original entry on oeis.org

78, 1014, 2418, 3354, 7566, 8502, 10842, 11622, 12246, 12714, 13026, 15054, 15366, 15522, 16458, 17394, 23946, 26286, 27222, 27534, 29562, 29874, 30342, 31434, 31902, 33774, 34242, 35646, 36114, 40794, 42198, 43602, 44538, 47814, 48126, 48282, 49218, 50154, 52494, 55302, 57174, 57642, 59046, 59982
Offset: 1

Views

Author

Paolo P. Lava, Apr 28 2016

Keywords

Comments

3318 = 2 * 3 * 7 * 79.
All terms are multiples of a(1) = 78.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 37.

Examples

			Bernoulli B_{78} is 414846365575400828295179035549542073492199375372400483487/3318, hence 78 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,3318);
  • Mathematica
    Select[78 Range@ 800, Denominator@ BernoulliB@ # == 3318 &] (* Michael De Vlieger, Apr 28 2016 *)
  • PARI
    lista(nn) = for(n=1, nn, if(denominator(bernfrac(n)) == 3318, print1(n, ", "))); \\ Altug Alkan, Apr 28 2016
    
  • Python
    from sympy import divisors, isprime
    A272383_list = []
    for i in range(78, 10**6, 78):
        for d in divisors(i):
            if d not in (1,2,6,78) and isprime(d+1):
                break
        else:
            A272383_list.append(i) # Chai Wah Wu, May 02 2016

Extensions

a(9)-a(22) from Altug Alkan, Apr 28 2016
More terms from Michael De Vlieger, Apr 28 2016

A275770 Primes p == 5 (mod 6) that are not Sophie Germain primes.

Original entry on oeis.org

17, 47, 59, 71, 101, 107, 137, 149, 167, 197, 227, 257, 263, 269, 311, 317, 347, 353, 383, 389, 401, 449, 461, 467, 479, 503, 521, 557, 563, 569, 587, 599, 617, 647, 677, 701, 773, 797, 821, 827, 839, 857, 863, 881, 887, 929, 941, 947, 971, 977, 983, 1061, 1091, 1097
Offset: 1

Views

Author

Hilko Koning, Aug 08 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]], Mod[#, 6] == 5 && \[Not] PrimeQ[2 # + 1] &]
  • PARI
    forprime(p=1, 900, if(Mod(p, 6)==5 && !ispseudoprime(2*p+1), print1(p, ", "))) \\ Felix Fröhlich, Aug 08 2016

Formula

Subset of A156543 and subset of A045979
Intersection of A007528 and A053176. - Felix Fröhlich, Aug 08 2016

A295587 Numbers k such that Bernoulli number B_{k} has denominator 13530.

Original entry on oeis.org

40, 6680, 7880, 8920, 9080, 10280, 12520, 12680, 14120, 15320, 15560, 18280, 20840, 21640, 22760, 23480, 25720, 26440, 28040, 30040, 30280, 31880, 33080, 33560, 34520, 35240, 35480, 36280, 38680, 39640, 42040, 43880, 44360, 46120, 46520, 46840, 47240, 47720, 48520
Offset: 1

Views

Author

Paolo P. Lava, Nov 24 2017

Keywords

Comments

13530 = 2*3*5*11*41.
All terms are multiples of a(1) = 40.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 11519.

Examples

			Bernoulli B_{40} is -261082718496449122051/13530, hence 40 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,13530);
    # Alternative: # according to Robert Israel code in A282773
    with(numtheory): filter:= n ->
    select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 11, 41}:
    select(filter, [seq(i, i=1..10^5)]);
  • Mathematica
    Select[Range[50000],Denominator[BernoulliB[#]]==13530&] (* Harvey P. Dale, Jul 29 2025 *)

A295588 Numbers k such that Bernoulli number B_{k} has denominator 14322.

Original entry on oeis.org

30, 1770, 3810, 4170, 4470, 4890, 5910, 5970, 6810, 8070, 9210, 10590, 11370, 11670, 12030, 12990, 13470, 13890, 14370, 14970, 15630, 16890, 17070, 17610, 18510, 18570, 19290, 19410, 20190, 20310, 21270, 22710, 24810, 25710, 26310, 27570, 27870, 29010, 29490, 29730
Offset: 1

Views

Author

Paolo P. Lava, Nov 24 2017

Keywords

Comments

14322 = 2*3*7*11*31.
All terms are multiples of a(1) = 30.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 12899.

Examples

			Bernoulli B_{30} is 8615841276005/14322, hence 30 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,14322);
    # Alternative: # according to Robert Israel code in A282773
    with(numtheory): filter:= n ->
    select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 11, 31}:
    select(filter, [seq(i, i=1..10^5)]);
Previous Showing 21-30 of 42 results. Next