cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A278310 Numbers m such that T(m) + 3*T(m+1) is a square, where T = A000217.

Original entry on oeis.org

3, 143, 4899, 166463, 5654883, 192099599, 6525731523, 221682772223, 7530688524099, 255821727047183, 8690408031080163, 295218051329678399, 10028723337177985443, 340681375412721826703, 11573138040695364122499, 393146012008229658338303, 13355391270239113019379843
Offset: 1

Views

Author

Bruno Berselli, Nov 17 2016

Keywords

Comments

Equivalently, both m+1 and 2*m+3 are squares for nonnegative m.
Corresponding triangular numbers T(m): 6, 10296, 12002550, 13855048416, 15988853699286, 18451128064030200, 21292585958400815526, ...
Square roots of T(m) + 3*T(m+1) are listed by A082405 (after 0).
Negative values of m for which T(m) + 3*T(m+1) is a square: -1, -2, -26, -842, -28562, -970226, -32959082, ...

Examples

			3 is in the sequence because T(3) + 3*T(4) = 6 + 3*10 = 6^2.
For n=5 is a(5) = 5654883, therefore floor(sqrt(5654883)) = 2377 = A182189(5) - 2 = 2379 - 2.
		

Crossrefs

Subsequence of A000466.
Cf. A278438: numbers m such that T(m) + 2*T(m+1) is a square.
Cf. A078522: numbers m such that 3*T(m) + T(m+1) is a square.
Cf. similar sequences with closed form ((1 + sqrt(2))^(4*r) + (1 - sqrt(2))^(4*r))/8 + k/4: A084703 (k=-1), A076218 (k=3), this sequence (k=-5).

Programs

  • Magma
    Iv:=[3,143]; [n le 2 select Iv[n] else 34*Self(n-1)-Self(n-2)+40: n in [1..20]];
  • Maple
    P:=proc(q) local n; for n from 3 to q do if type(sqrt(2*n^2+5*n+3),integer) then print(n); fi; od; end: P(10^9); # Paolo P. Lava, Nov 18 2016
  • Mathematica
    Table[((1 + Sqrt[2])^(4 n) + (1 - Sqrt[2])^(4 n))/8 - 5/4, {n, 1, 20}]
    RecurrenceTable[{a[1] == 3, a[2] == 143, a[n] == 34 a[n - 1] - a[n - 2] + 40}, a, {n, 1, 20}]
    LinearRecurrence[{35, -35, 1}, {3, 143, 4899}, 50] (* G. C. Greubel, Nov 20 2016 *)
  • PARI
    Vec(x*(3 + 38*x - x^2)/((1 - x)*(1 - 34*x + x^2)) + O(x^50)) \\ G. C. Greubel, Nov 20 2016
    
  • Sage
    def A278310():
        a, b = 3, 143
        yield a
        while True:
            yield b
            a, b = b, 34*b - a + 40
    a = A278310(); print([next(a) for  in range(18)]) # _Peter Luschny, Nov 18 2016
    

Formula

O.g.f.: x*(3 + 38*x - x^2)/((1 - x)*(1 - 34*x + x^2)).
E.g.f.: (exp((1-sqrt(2))^4*x) + exp((1+sqrt(2))^4*x) - 10*exp(x))/8 + 1.
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n>3.
a(n) = 34*a(n-1) - a(n-2) + 40 for n>2.
a(n) = a(-n) = ((1 + sqrt(2))^(4*n) + (1 - sqrt(2))^(4*n))/8 - 5/4.
a(n) = 4*A001109(n)^2 - 1.
a(n) = -A029546(n) + 38*A029546(n-1) + 3*A029546(n-2) for n>1.
Lim_{n -> infinity} a(n)/a(n-1) = A156164.
Floor(sqrt(a(n))) = A182189(n) - 2.
a(n) - a(n-1) = 4*A046176(n) for n>1.

A065113 Sum of the squares of the a(n)-th and the (a(n)+1)st triangular numbers (A000217) is a perfect square.

Original entry on oeis.org

6, 40, 238, 1392, 8118, 47320, 275806, 1607520, 9369318, 54608392, 318281038, 1855077840, 10812186006, 63018038200, 367296043198, 2140758220992, 12477253282758, 72722761475560, 423859315570606, 2470433131948080, 14398739476117878, 83922003724759192
Offset: 1

Views

Author

Robert G. Wilson v, Nov 12 2001

Keywords

Comments

The sequence of square roots of the sum of the squares of the n-th and the (n+1)st triangular numbers is A046176.

Examples

			T6 = 21 and T7 = 28, 21^2 + 28^2 = 441 + 784 = 1225 = 35^2.
		

Crossrefs

Cf. A001652, A002315, A003499 (first differences), A065651.

Programs

  • Mathematica
    CoefficientList[ Series[2*(x - 3)/(-1 + 7x - 7x^2 + x^3), {x, 0, 24} ], x]
    LinearRecurrence[{7,-7,1},{6,40,238},41] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    a(n)=-1+subst(poltchebi(abs(n+1))-poltchebi(abs(n)),x,3)/2
    
  • PARI
    Vec(2*x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^40)) \\ Colin Barker, Mar 05 2016

Formula

a(n) = 2*A001652(n) = -1 + A002315(n).
a(n) - a(n-1) = A003499(n).
From Michael Somos, Apr 07 2003: (Start)
G.f.: 2*x*(3-x)/((1-6*x+x^2)*(1-x)).
a(n) = 6*a(n-1) - a(n-2) + 4.
a(-1-n) = -a(n) - 2. (End)
a(1)=6, a(2)=40, a(3)=238, a(n) = 7*a(n-1)-7*a(n-2)+a(n-3). - Harvey P. Dale, Dec 27 2011
a(n)^2 + (a(n)+2)^2 = A075870(n+1)^2 = A165518(n+1). - Joerg Arndt, Feb 15 2012
a(n) = (-2-(3-2*sqrt(2))^n*(-1+sqrt(2))+(1+sqrt(2))*(3+2*sqrt(2))^n)/2. - Colin Barker, Mar 05 2016
From Klaus Purath, Sep 05 2021: (Start)
(a(n+1) - a(n) - a(n-1) + a(n-2))/8 = A005319(n), for n >= 3.
((a(n) - a(n-1))^2)/2 - 2 = A005319(n)^2 = 2*A132592(n), for n>= 2.
a(n) = A265278(2*n+1).
a(n) = A293004(2*n+1).
a(n) = A213667(2*n).
a(n) = Sum_{k=1..n} A003499(k). (End)

A082405 a(n) = 34*a(n-1) - a(n-2); a(0)=0, a(1)=6.

Original entry on oeis.org

0, 6, 204, 6930, 235416, 7997214, 271669860, 9228778026, 313506783024, 10650001844790, 361786555939836, 12290092900109634, 417501372047787720, 14182756556724672846, 481796221556591089044, 16366888776367372354650
Offset: 0

Views

Author

Lekraj Beedassy, Apr 23 2003

Keywords

Comments

Sequence refers to inradius of primitive Pythagorean triangle with consecutive legs, even followed by odd. It has semiperimeter A046176(n+1) and area a(n)*A046176(n+1).

Crossrefs

Cf. A046176.

Programs

  • Mathematica
    a[0] = 1; a[1] = 6; a[n_] := 34 a[n-1] - a[n-2]; Table[a[n], {n,0,15}] (* or *) LinearRecurrence[{34,-1}, {1,6}, 16] (* Indranil Ghosh, Feb 18 2017 *)

Formula

For n > 1, a(n)/2 = A001652(2*n-1) - Sum_{k=0..n-1} A001333(4*k); e.g., 6930/2 = 4059 - (17+577). - Charlie Marion, Jul 31 2003
a(n) = A001109(2n).
G.f.: 6*x/(1 - 34*x + x^2). - Philippe Deléham, Nov 18 2008
a(n) = 6*A029547(n-1). - R. J. Mathar, Jun 07 2016

A284876 Positive integers that are square roots of products a*(a+d)*(a+2*d) with coprime a > 0, d >= 0.

Original entry on oeis.org

1, 35, 120, 1189, 1547, 1560, 2737, 4080, 8400, 13175, 24360, 29520, 31080, 39997, 40391, 52633, 62279, 65773, 80520, 93023, 131040, 133055, 133560, 185640, 212219, 240240, 241345, 379680, 385440, 393805, 399960, 434231, 449497, 471240, 510229, 555360, 585395
Offset: 1

Views

Author

Jonathan Sondow, Apr 05 2017

Keywords

Comments

The main entry for this sequence is A284666, formed by the triples a, a+d, a+2*d. The pairs a, d form A284874.
sqrt((1+d)*(1+2*d)) is a member if and only if d is in A078522. The values of sqrt((1+d)*(1+2*d)) form the subsequence A046176.

Examples

			gcd(1,24)=1 and 1*(1+24)*(1+2*24) = 25*49 = (5*7)^2, so 5*7 = 35 is a member.
gcd(18,7)=1 and 18*(18+7)*(18+2*7) = 18*25*32 = 9*25*64 = (3*5*8)^2, so 3*5*8 = 120 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    nn = 50000; t = {};
    p[a_, b_, c_] := a b c; Do[
    If[p[a, a + d, a + 2 d] <= 2 nn^2 && GCD[a, d] == 1 &&
       IntegerQ[Sqrt[p[a, a + d, a + 2 d]]],
      AppendTo[t, Sqrt[p[a, a + d, a + 2 d]]]], {a, 1, nn}, {d, 0, nn}]; Sort[t]
  • PARI
    is(n,s)={!fordiv(n*=n,a,a^3>n && return;issquare(n\a*8+a^2,&s) && (s-=3*a)%4==0 && gcd(s\4,a)==1 && break)} \\ M. F. Hasler, Apr 06 2017

Formula

a(k+1)^2 = A284666(3*k+1)*A284666(3*k+2)*A284666(3*k+3) = A284874(2*k+1)*(A284874(2*k+1) + A284874(2*k+2))*(A284874(2*k+1) + 2*A284874(2*k+2)) for k >= 0.

Extensions

a(19)-a(37) from Giovanni Resta, Apr 06 2017

A111649 a(n) = A001541(n)*A001653(n+1) + A001541(n)*A002315(n) + A001653(n+1)*A002315(n).

Original entry on oeis.org

3, 71, 2379, 80783, 2744211, 93222359, 3166815963, 107578520351, 3654502875939, 124145519261543, 4217293152016491, 143263821649299119, 4866752642924153523, 165326326037771920631, 5616228332641321147899
Offset: 0

Views

Author

Charlie Marion, Aug 24 2005

Keywords

Examples

			a(1) = 71 = 3*5 + 3*7 + 5*7.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35, -35, 1}, {3, 71, 2379}, 20] (* Paolo Xausa, Feb 06 2024 *)

Formula

a(n) = A001653(2n+2) - 2*A002315(n)^2, e.g., 2379 = 5741 - 2*41^2;
a(n) = A001652(2n) + A002315(n)^2 + 2, e.g., 2379 = 696 + 41^2 + 2;
a(n) = 2*A046176(n+1)+1, e.g., 2379 = 2*1189 + 1.
G.f.: (x^2+34*x-3) / ((x-1)*(x^2-34*x+1)). - Colin Barker, Dec 14 2014 [adjusted for corrected term and empirical g.f. confirmed for more terms and recurrence of source sequences. - Ray Chandler, Feb 05 2024]

Extensions

a(3) = 80783 corrected by Ray Chandler, Feb 05 2024

A195539 Numerators b(n) of Pythagorean approximations b(n)/a(n) to sqrt(8).

Original entry on oeis.org

12, 35, 408, 1189, 13860, 40391, 470832, 1372105, 15994428, 46611179, 543339720, 1583407981, 18457556052, 53789260175, 627013566048, 1827251437969, 21300003689580, 62072759630771, 723573111879672, 2108646576008245, 24580185800219268
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195538 for Mathematica program.
Conjecture: a(n) = +34*a(n-2) -a(n-4) with a(2n+1) = A000129(4n+4), a(2n)=A046176(n+1). - R. J. Mathar, Sep 21 2011

Crossrefs

A284666 List of 3-term arithmetic progressions of coprime positive integers whose product is a square.

Original entry on oeis.org

1, 1, 1, 1, 25, 49, 18, 25, 32, 1, 841, 1681, 49, 169, 289, 50, 169, 288, 49, 289, 529, 128, 289, 450, 98, 625, 1152, 289, 625, 961, 800, 841, 882, 162, 1681, 3200, 288, 1369, 2450, 529, 1369, 2209, 1, 28561, 57121, 49, 5329, 10609, 961, 1681, 2401, 289, 2809, 5329
Offset: 1

Views

Author

Jonathan Sondow, Mar 31 2017

Keywords

Comments

This is a 3-column table read by rows a, a+d, a+2*d. Each row has product a square. The rows are ordered by the products. The square roots of the products form A284876, which contains A046176. The pairs a,d form A284874.
Goldbach proved that a product of 3 consecutive positive integers is never a square.
Euler proved that a product of 4 consecutive positive integers is never a square.
Erdos and Selfridge (1975) proved that a product of 2 or more consecutive positive integers is never a square or a higher power.
Saradha (1998) proved that 18, 25, 32 is the only arithmetic progression a, a+d, ..., a+(k-1)*d whose product is a square if a>=1, 1=3 with gcd(a,d)=1. In 1997 she showed that the product is not a square or a higher power if a>=1, 1=3 with gcd(a,d)=1.
(1, 1+d, 1+2*d) is in the table if and only if d is in A078522. - Robert Israel, Apr 05 2017 - Jonathan Sondow, Apr 06 2017

Examples

			18*(18+7)*(18+2*7) = 18*25*32 = 9*25*64 = (3*5*8)^2 and gcd(18,25,32) = 1, so 18,25,32 is in the sequence.
		

Crossrefs

Programs

  • Maple
    N:= 10^11: # to get all triples where the product <= N
    Res:= [1,0]:
    for a from 1 to floor(N^(1/3)) do
      for d from 1 while a*(a+d)*(a+2*d) <= N do
         if igcd(a,d) = 1 and issqr(a*(a+d)*(a+2*d)) then
           Res:= Res, [a,d]
         fi
      od
    od:
    Res:= sort([Res], (s,t) -> s[1]*(s[1]+s[2])*(s[1]+2*s[2]) <= t[1]*(t[1]+t[2])*(t[1]+2*t[2])):
    map(t -> (t[1],t[1]+t[2],t[1]+2*t[2]), Res); # Robert Israel, Apr 05 2017
  • Mathematica
    nn = 50000; t = {};
    p[a_, b_, c_] := a *b*c; Do[
    If[p[a, a + d, a + 2 d] <= 2 nn^2 && GCD[a, d] == 1 &&
       IntegerQ[Sqrt[p[a, a + d, a + 2 d]]],
      AppendTo[t, {a, a + d, a + 2 d}]], {a, 1, nn}, {d, 0, nn}];
    Sort[t, p[#1[[1]], #1[[2]], #1[[3]]] <
        p[#2[[1]], #2[[2]], #2[[3]]] &] // Flatten

Formula

a(3*k+1) = A284874(2*k+1) and a(3*k+2) = A284874(2*k+1)+A284874(2*k+2) and a(3*k+3) = A284874(2*k+1)+2*A284874(2*k+2) and a(3*k+1)*a(3*k+2)*a(3*k+3) = A284876(k+1)^2 for k>=0.

A157880 Expansion of 136*x^2 / (-x^3+1155*x^2-1155*x+1).

Original entry on oeis.org

0, 136, 157080, 181270320, 209185792336, 241400223085560, 278575648254944040, 321476056685982336736, 370983090839975361649440, 428114165353274881361117160, 494043375834588373115367553336, 570125627598949629300252795432720, 657924480205812037624118610561805680
Offset: 1

Views

Author

Paul Weisenhorn, Mar 08 2009

Keywords

Comments

This sequence is part of a solution of a more general problem involving two equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, for details see comment in A157014.
A157880 is the c(n) sequence for A=8.

Crossrefs

8*A157880(n)+1 = A077420(n-1)^2.
9*A157880(n)+1 = A046176(n)^2.

Programs

  • Mathematica
    LinearRecurrence[{1155,-1155,1},{0,136,157080},20] (* Harvey P. Dale, Dec 04 2019 *)
  • PARI
    concat(0, Vec(136*x^2/(-x^3+1155*x^2-1155*x+1) + O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    a(n) = round(-((577+408*sqrt(2))^(-n)*(-1+(577+408*sqrt(2))^n)*(17+12*sqrt(2)+(-17+12*sqrt(2))*(577+408*sqrt(2))^n))/288) \\ Colin Barker, Jul 25 2016

Formula

G.f.: 136*x^2/(-x^3+1155*x^2-1155*x+1).
c(1) = 0, c(2) = 136, c(3) = 1155*c(2), c(n) = 1155 * (c(n-1)-c(n-2)) + c(n-3) for n>3.
a(n) = -((577+408*sqrt(2))^(-n)*(-1+(577+408*sqrt(2))^n)*(17+12*sqrt(2)+(-17+12*sqrt(2))*(577+408*sqrt(2))^n))/288. - Colin Barker, Jul 25 2016

Extensions

Edited by Alois P. Heinz, Sep 09 2011

A004294 Expansion of (1+2*x+x^2)/(1-34*x+x^2).

Original entry on oeis.org

1, 36, 1224, 41580, 1412496, 47983284, 1630019160, 55372668156, 1881040698144, 63900011068740, 2170719335639016, 73740557400657804, 2505008232286726320, 85096539340348037076, 2890777329339546534264, 98201332658204234127900, 3335954533049604413814336
Offset: 0

Views

Author

Keywords

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 160, middle display.

Crossrefs

Pairwise sums of A046176.

Programs

Formula

From Colin Barker, Apr 16 2016: (Start)
a(n) = 3*((17+12*sqrt(2))^(1-n)*(-1+(17+12*sqrt(2))^(2*n)))/(48+34*sqrt(2)) for n>0.
a(n) = 34*a(n-1) - a(n-2) for n>2.
(End)
a(n) = (-(-1)^(2^n) + 3*sqrt(2)*sinh(n*log(17+12*sqrt(2))) + 1)/2. - Ilya Gutkovskiy, Apr 16 2016

A280181 Indices of centered 9-gonal numbers (A060544) that are also squares (A000290).

Original entry on oeis.org

1, 17, 561, 19041, 646817, 21972721, 746425681, 25356500417, 861374588481, 29261379507921, 994025528680817, 33767606595639841, 1147104598723073761, 38967788749988868017, 1323757712900898438801, 44968794449880558051201, 1527615253583038075302017
Offset: 1

Views

Author

Colin Barker, Dec 28 2016

Keywords

Comments

Also positive integers y in the solutions to 2*x^2 - 9*y^2 + 9*y - 2 = 0, the corresponding values of x being A046176.
Consider all ordered triples of consecutive integers (k, k+1, k+2) such that k is a square and k+1 is twice a square; then the values of k are the squares of the NSW numbers (A002315), the values of k+1 are twice the squares of the odd Pell numbers (A001653), and the values of k+2 are thrice the terms of this sequence. (See the Example section.) - Jon E. Schoenfield, Sep 06 2019

Examples

			17 is in the sequence because the 17th centered 9-gonal number is 1225, which is also the 35th square.
From _Jon E. Schoenfield_, Sep 06 2019: (Start)
The following table illustrates the relationship between the NSW numbers (A002315), the odd Pell numbers (A001653), and the terms of this sequence:
.
  |  A002315(n-1)^2  |   2*A001653(n)^2  |
n |   = 3*a(n) - 2   |    = 3*a(n) - 1   |       3*a(n)
--+------------------+-------------------+-------------------
1 |    1^2 =       1 |   1^2*2 =       2 |      1*3 =       3
2 |    7^2 =      49 |   5^2*2 =      50 |     17*3 =      51
3 |   41^2 =    1681 |  29^2*2 =    1682 |    561*3 =    1683
4 |  239^2 =   57121 | 169^2*2 =   57122 |  19041*3 =   57123
5 | 1393^2 = 1940449 | 985^2*2 = 1940450 | 646817*3 = 1940451
(End)
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35, -35, 1}, {1, 17, 561}, 50] (* G. C. Greubel, Dec 28 2016 *)
  • PARI
    Vec(x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)) + O(x^20))

Formula

a(n) = (6 + (3-2*sqrt(2))*(17+12*sqrt(2))^(-n) + (3+2*sqrt(2))*(17+12*sqrt(2))^n) / 12.
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)).
a(n) = (A002315(n-1)^2 + 2)/3 = (2*A001653(n)^2 + 1)/3. - Jon E. Schoenfield, Sep 06 2019
a(n) = A077420(floor((n-1)/2)) * A056771(floor(n/2)). - Jon E. Schoenfield, Sep 08 2019
E.g.f.: -1+(1/12)*(6*exp(x)+(3-2*sqrt(2))*exp((17-12*sqrt(2))*x)+(3+2*sqrt(2))*exp((17+12*sqrt(2))*x)). - Stefano Spezia, Sep 08 2019
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2) = A156164. - Andrea Pinos, Oct 07 2022
Previous Showing 11-20 of 22 results. Next