cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A203619 Numbers that are a sum of m=3 successive primes and also a product of m=3 (other) successive primes.

Original entry on oeis.org

33263, 7566179, 10681031, 29884301, 51881689, 94593973, 182918137, 187466723, 319512181, 682238471, 799964687, 3926804047, 4047409651, 4881262679, 11857438631, 13418999327, 19184166361, 20428396159, 20743879777, 32573603551, 34148299187, 56372241473, 72215998451
Offset: 1

Views

Author

Zak Seidov, Feb 09 2012

Keywords

Comments

Indices of initial addends (summands) are 1343, 184557, 254101, 662222, 1108908, 1946623, 3616497, 3700883, 6114024, 12508273, 14539139, 65654476, 67568267, 80729196.
Initial addends (summands) are 11083, 2522057, 3560329, 9961421, 17293891, 31531301, 60972697, 62488883, 106504039, 227412803, 266654879, 1308934661, 1349136511, 1627087549.
Indices of initial factors are 10, 44, 47, 63, 73, 87, 103, 104, 123, 151, 157, 248, 250, 264.
Initial factors are 29, 193, 211, 307, 367, 449, 563, 569, 677, 877, 919, 1571, 1583, 1693.

Examples

			33263 = 11083+11087+11093 = 29*31*37,
7566179 = 2522057+2522059+2522063 = 193*197*199,
10681031 = 3560329+3560339+3560363 = 211*223*227,
4881262679 = 1627087549+1627087559+1627087571 = 1693*1697*1699.
		

Crossrefs

Intersection of A034961 and A046301.
Cf. A034961 (sums of three consecutive primes), A046301 (product of 3 successive primes).

Programs

  • PARI
    list(lim)={
        my(v=List(),p,q,p1,q1,r1,t);
        t=nextprime(lim^(1/3));
        while(t*precprime(t-1)*precprime(precprime(t-1)-1)t,r1=q1;q1=p1;p1=precprime(p1-1));
            if(p1+q1+r1==t,listput(v,t));
            p=q;q=r
        );
        Vec(v)
    }; \\ Charles R Greathouse IV, Feb 13 2012

A127343 Product of 11 consecutive primes.

Original entry on oeis.org

200560490130, 3710369067405, 50708377254535, 436092044389001, 2928046583754721, 14107860812636383, 64027983688118969, 229747470880897477, 810162134158954261, 2500935283708076197
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

a(n) is the absolute value of the coefficient of x^0 of the polynomial Product_{j=0..10} (x-prime(n+j)) of degree 11; the roots of this polynomial are prime(n), ..., prime(n+10).

Crossrefs

Programs

  • Magma
    [&*[ NthPrime(n+k): k in [0..10] ]: n in [1..50] ]; // Vincenzo Librandi, Apr 03 2011
  • Mathematica
    a = {}; Do[AppendTo[a, Product[Prime[x + n], {n, 0, 10}]], {x, 1, 50}]; a
    Times@@@Partition[Prime[Range[50]],11,1] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    {m=10;k=11;for(n=0,m-1,print1(a=prod(j=1,k,prime(n+j)),","))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    {m=10;k=11;for(n=1,m,print1(abs(polcoeff(prod(j=0,k-1,(x-prime(n+j))),0)),","))} \\ Klaus Brockhaus, Jan 21 2007
    

Extensions

Edited by Klaus Brockhaus, Jan 21 2007

A096334 Triangle read by rows: T(n,k) = prime(n)#/prime(k)#, 0<=k<=n.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 30, 15, 5, 1, 210, 105, 35, 7, 1, 2310, 1155, 385, 77, 11, 1, 30030, 15015, 5005, 1001, 143, 13, 1, 510510, 255255, 85085, 17017, 2431, 221, 17, 1, 9699690, 4849845, 1616615, 323323, 46189, 4199, 323, 19, 1, 223092870, 111546435, 37182145, 7436429, 1062347, 96577, 7429, 437, 23, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 03 2004

Keywords

Comments

T(n,k) is the (k+1)-th product of (n-k) successive primes (k, n-(k+1) >= 0). - Alois P. Heinz, Jan 21 2022

Examples

			Triangle begins:
    1;
    2,   1;
    6,   3,  1;
   30,  15,  5, 1;
  210, 105, 35, 7, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A002110, A070826.
T(2n,n) gives A107712.
Row sums give A350895.
Antidiagonal sums give A350758.
Cf. A073485 (distinct values sorted).

Programs

  • Maple
    T:= proc(n, k) option remember;
         `if`(n=k, 1, T(n-1, k)*ithprime(n))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jan 21 2022
  • Mathematica
    T[n_, k_] := Times @@ Prime[Range[k + 1, n]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 13 2021 *)
  • PARI
    pr(n) = factorback(primes(n)); \\ A002110
    row(n) = my(P=pr(n)); vector(n+1, k, P/pr(k-1)); \\ Michel Marcus, Jan 21 2022

Formula

T(n,0) = A002110(n); T(n,n) = 1;
T(n,n-1) = A000040(n) for n>0;
T(n,k) = A002110(n)/A002110(k), 0<=k<=n.
T(n,k) = Product_{j=k+1..n} prime(j). - Alois P. Heinz, Jan 21 2022

A098012 Triangle read by rows in which the k-th term in row n (n >= 1, k = 1..n) is Product_{i=0..k-1} prime(n-i).

Original entry on oeis.org

2, 3, 6, 5, 15, 30, 7, 35, 105, 210, 11, 77, 385, 1155, 2310, 13, 143, 1001, 5005, 15015, 30030, 17, 221, 2431, 17017, 85085, 255255, 510510, 19, 323, 4199, 46189, 323323, 1616615, 4849845, 9699690, 23, 437, 7429, 96577, 1062347, 7436429, 37182145, 111546435, 223092870
Offset: 1

Views

Author

Alford Arnold, Sep 09 2004

Keywords

Comments

Also, square array A(m,n) in which row m lists all products of m consecutive primes (read by falling antidiagonals). See also A248164. - M. F. Hasler, May 03 2017

Examples

			2
3 3*2
5 5*3 5*3*2
7 7*5 7*5*3 7*5*3*2
Or, as an infinite square array:
     2     3     5     7  ... : row 1 = A000040,
     6    15    35    77  ... : row 2 = A006094,
    30   105   385  1001  ... : row 3 = A046301,
   210  1155  5005 17017  ... : row 4 = A046302,
   ..., with col.1 = A002110, col.2 = A070826, col.3 = A059865\{1}. - _M. F. Hasler_, May 03 2017
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..200],IsPrime);;
    T:=Flat(List([1..9],n->List([1..n],k->Product([0..k-1],i->P[n-i])))); # Muniru A Asiru, Mar 16 2019
  • Haskell
    a098012 n k = a098012_tabl !! (n-1) !! (k-1)
    a098012_row n = a098012_tabl !! (n-1)
    a098012_tabl = map (scanl1 (*)) a104887_tabl
    -- Reinhard Zumkeller, Oct 02 2014
    
  • Maple
    T:=(n,k)->mul(ithprime(n-i),i=0..k-1): seq(seq(T(n,k),k=1..n),n=1..9); # Muniru A Asiru, Mar 16 2019
  • Mathematica
    Flatten[ Table[ Product[ Prime[i], {i, n, j, -1}], {n, 9}, {j, n, 1, -1}]] (* Robert G. Wilson v, Sep 21 2004 *)
  • PARI
    T098012(n,k)=prod(i=0,k-1,prime(n-i)) \\ "Triangle" variant
    A098012(m,n)=prod(i=0,m-1,prime(n+i)) \\ "Square array" variant. - M. F. Hasler, May 03 2017
    

Formula

n-th row = partial products of row n in A104887. - Reinhard Zumkeller, Oct 02 2014

Extensions

More terms from Robert G. Wilson v, Sep 21 2004

A127342 Product of 10 consecutive primes.

Original entry on oeis.org

6469693230, 100280245065, 1236789689135, 10141675450907, 62298863484143, 266186053068611, 1085220062510491, 3766351981654057, 12091972151626183, 35224440615606707, 86239147714071593, 203079283326684719
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

a(n) = coefficient of x^0 of the polynomial Product_{j=0..9} (x-prime(n+j)) of degree 10; the roots of this polynomial are prime(n), ..., prime(n+9).

Crossrefs

Programs

  • Magma
    [&*[ NthPrime(n+k): k in [0..9] ]: n in [1..50] ]; // Vincenzo Librandi, Apr 03 2011
  • Mathematica
    a = {}; Do[AppendTo[a, Product[Prime[x + n], {n, 0, 9}]], {x, 1, 50}]; a
    Times@@@Partition[Prime[Range[50]],10,1] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    {m=12;k=10;for(n=0,m-1,print1(a=prod(j=1,k,prime(n+j)),","))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    {m=12;k=10;for(n=1,m,print1(polcoeff(prod(j=0,k-1,(x-prime(n+j))),0),","))} \\ Klaus Brockhaus, Jan 21 2007
    

Extensions

Edited by Klaus Brockhaus, Jan 21 2007

A127344 Product of 12 consecutive primes.

Original entry on oeis.org

7420738134810, 152125131763605, 2180460221945005, 20496326086283047, 155186468939000213, 832363787945546597, 3905707004975257109, 15393080549020130959, 57521511525285752531, 182568275710689562381, 497341164867050876831, 1331590860773071702483
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

a(n) = coefficient of x^0 of the polynomial Prod_{j=0,11}(x-prime(n+j)) of degree 12; the roots of this polynomial are prime(n), ..., prime(n+11).

Crossrefs

Programs

  • Magma
    [&*[ NthPrime(n+k): k in [0..11] ]: n in [1..50] ]; // Vincenzo Librandi, Apr 03 2011
  • Maple
    A127344 := proc(n) mul(ithprime(n+k),k=0..11) ; end proc: # R. J. Mathar, Apr 05 2011
  • Mathematica
    a = {}; Do[AppendTo[a, Product[Prime[x + n], {n, 0, 11}]], {x, 1, 50}]; a
    Times@@@Partition[Prime[Range[50]],12,1] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    {m=10;k=12;for(n=0,m-1,print1(a=prod(j=1,k,prime(n+j)),","))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    {m=10;k=12;for(n=1,m,print1(polcoeff(prod(j=0,k-1,(x-prime(n+j))),0),","))} \\ Klaus Brockhaus, Jan 21 2007
    

Extensions

Edited by Klaus Brockhaus, Jan 21 2007

A127491 Primes which are half of the absolute coefficients [x^2] of the 5th-order polynomials with prime roots as defined in A127489.

Original entry on oeis.org

310733, 426871, 15722159, 166492163, 177861107, 270396557, 342955763, 406947461, 1606837039, 1908243773, 2902193117, 3386269021, 5441167877, 6953015807, 7671152921, 10005413687, 10979785673, 14774655421, 16546239937
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2007

Keywords

Comments

The polynomials are of the form (x-prime(i))*(x-prime(i+1))*..*(x-prime(i+4)). The quadratic terms have coefficients which are of the form -sum_{j

Examples

			The first contribution is from the 11th polynomial, (x-prime(11)) *(x-prime(12)) *(x-prime(13)) *(x-prime(14)) *(x-prime(15)) = x^5 -199x^4 +15766x^3 -621466x^2 +12185065x -95041567,
where the coefficient of [x^2] is -621466. Its sign-reversed half is 310733, a prime.
		

Programs

  • Maple
    isA127491 := proc(k)
        local x,j,p ;
        mul( x-ithprime(k+j),j=0..4) ;
        expand(%) ;
        abs(coeff(%,x,2)/2) ;
        isprime(%)
    end proc:
    A127491k := proc(n)
        option remember ;
        if n = 0 then
            0;
        else
            for k from procname(n-1)+1 do
                if isA127491(k) then
                    return k ;
                end if;
            end do:
        end if;
    end proc:
    A127491 := proc(n)
        option remember ;
        local k ;
        k := A127491k(n) ;
        mul( x-ithprime(k+j),j=0..4) ;
        expand(%) ;
        abs(coeff(%,x,2)/2) ;
    end proc:
    seq(A127491(n),n=1..60) ; # R. J. Mathar, Apr 23 2023

Extensions

Entries replaced to comply with the definition. - R. J. Mathar, Sep 26 2011

A167447 Number of divisors of n which are not multiples of 3 consecutive primes.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 7, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 10, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 8, 2, 10, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8
Offset: 1

Author

Matthew Vandermast, Nov 05 2009

Keywords

Comments

If a number is a product of any number of consecutive primes, the number of its divisors which are not multiples of n consecutive primes is always a Fibonacci n-step number. See also A073485, A166469.

Examples

			Since 2 of 60's 12 divisors (30 and 60) are multiples of at least 3 consecutive primes, a(60) = 12 - 2 = 10.
		

Programs

  • PARI
    A300820(n) = if(omega(n)<=1, omega(n), my(pis=apply(p->primepi(p),factor(n)[,1]),el=1,m=1); for(i=2,#pis,if(pis[i] == (1+pis[i-1]),el++; m = max(m,el), el=1)); (m));
    A167447(n) = sumdiv(n,d,(A300820(d)<3)); \\ Antti Karttunen, Mar 21 2018

Formula

a) If n has no prime gaps in its factorization (cf. A073491), then, if the canonical factorization of n into prime powers is the product of p_i^(e_i), a(n) is the sum of all products of exponents which do not include 3 consecutive exponents, plus 1. For example, if A001221(n)=3, a(n)=e_1*e_2 +e_1*e_3 +e_2*e_3 +e_1 +e_2 +e_3 +1. If A001221(n)=k, the total number of terms always equals A000073(k+3).
The answer can also be computed in k steps, by finding the answers for the products of the first i powers for i=1 to i=k. Let the result of the i-th step be called r(i). r(1)=e_1+1; r(2)=e_1*e_2+e_1+e_2+1; r(3)=e_1*e_2+e_1*e_3+e_2*e_3+e_1+e_2+e_3+1; for i>3, r(i)=r(i-1)+e_i*r(i-2)+e_i*e-(i-1)*r(i-3).
b) If n has prime gaps in its factorization, express it as a product of the minimum number of A073491's members possible. Then apply either of the above methods to each of those members, and multiply the results to get a(n). a(n)=A000005(n) iff n has no triple of consecutive primes as divisors.
a(A002110(n)) = A000073(n+2).
a(n) = Sum_{d|n} [A300820(d) < 3]. - Antti Karttunen, Mar 21 2018

A378885 Numbers that are divisible by at least three different primes and the smallest three of them are consecutive primes.

Original entry on oeis.org

30, 60, 90, 105, 120, 150, 180, 210, 240, 270, 300, 315, 330, 360, 385, 390, 420, 450, 480, 510, 525, 540, 570, 600, 630, 660, 690, 720, 735, 750, 780, 810, 840, 870, 900, 930, 945, 960, 990, 1001, 1020, 1050, 1080, 1110, 1140, 1155, 1170, 1200, 1230, 1260, 1290
Offset: 1

Author

Amiram Eldar, Dec 09 2024

Keywords

Comments

All the positive multiples of 30 (A249674 \ {0}) are terms.
Numbers k such that A151800(A020639(k)) | k and also A101300(A020639(k)) | k.
The asymptotic density of this sequence is Sum_{k>=1} (Product_{j=1..k-1} (1-1/prime(j))) / (prime(k)*prime(k+1)*prime(k+2)) = 0.03943839735407432193784... .

Examples

			60 = 2^2 * 3 * 5 is a term since 2, 3 and 5 are consecutive primes.
770 = 2 * 5 * 7 * 11 is not a term since its smallest prime divisor is 2 and it is not divisible by 3, the prime next to 2.
1365 = 3 * 5 * 7 * 13 is a term since 3, 5 and 7 are consecutive primes.
		

Crossrefs

Subsequence of A000977.
Subsequences: A046301, A378884.

Programs

  • Mathematica
    q[k_] := Module[{p = FactorInteger[k][[;; , 1]]}, Length[p] > 2 && p[[2]] == NextPrime[p[[1]]] && p[[3]] == NextPrime[p[[2]]]]; Select[Range[1300], q]
  • PARI
    is(k) = if(k == 1, 0, my(p = factor(k)[,1]); #p > 2 && p[2] == nextprime(p[1]+1) && p[3] == nextprime(p[2]+1));

A380438 Integers k that are the product of 3 distinct primes, the smallest of which is larger than the 5th root of k: k = p*q*r, where p, q, r are primes and k^(1/5) < p < q < r.

Original entry on oeis.org

30, 105, 165, 195, 231, 385, 455, 595, 665, 715, 805, 935, 1001, 1015, 1045, 1085, 1105, 1235, 1265, 1295, 1309, 1435, 1463, 1495, 1505, 1547, 1595, 1615, 1645, 1705, 1729, 1771, 1855, 1885, 1955, 2015, 2035, 2065, 2093, 2135, 2185, 2233, 2255, 2261, 2345, 2365, 2387, 2405, 2431, 2465, 2485
Offset: 1

Author

Matthew Goers, Jan 24 2025

Keywords

Comments

This subsequence of the sphenics (A007304) is similar to A362910 or A138109 for semiprimes. Ishmukhametov and Sharifullina defined semiprimes n = p*q where each prime is greater than n^(1/4) as strongly semiprime. This sequence defines sphenic numbers with an analogous 'strength' as a product of 3 distinct primes k = p*q*r where each prime is greater than k^(1/5), or, alternately, k < p^5.
The only even term is 30 = 2*3*5.
As there are many equivalent ways of expressing Ishmukhametov and Sharifullina's "strongly semiprime" criterion, it is not obvious how it should most appropriately be extended to measure an equivalent "strength" of numbers with more prime factors. Here we follow a comparison of the least prime factor, p, to the factored number, k; but we could instead compare the greatest prime factor, r, to k; or p to r; or measure the variance/standard deviation of the prime factors (more precisely, after twice taking the logarithm of each factor as is done in A379271). Furthermore, it looks clear that the comparison used here (p against k^(1/5)) could be shown to give a substantially lower density asymptotically within the sphenics than Ishmukhametov and Sharifullina's equivalent for semiprimes. - Peter Munn, Feb 18 2025 and May 13 2025

Examples

			231 = 3*7*11 and 231^(1/5) < 3, so 231 is in the sequence.
255 = 3*5*17 but 255^(1/5) > 3, so 255 is not in the sequence.
		

Crossrefs

Subsequence of A253567, A290965, A379271, and A007304.
A046301 is a subsequence (product of 3 successive primes).
Cf. A115957, A138109, A251728, A362910 (strong semiprimes), A380995.

Programs

  • Mathematica
    q[k_] := Module[{f = FactorInteger[k]}, f[[;; , 2]] == {1, 1, 1} && f[[1, 1]]^5 > k]; Select[Range[2500], q] (* Amiram Eldar, Feb 14 2025 *)
  • PARI
    isok(k) = my(f=factor(k)); (bigomega(f)==3) && (omega(f)==3) && (k < vecmin(f[,1])^5); \\ Michel Marcus, Jan 27 2025
    
  • PARI
    list(lim)=my(v=List()); forprime(p=2,sqrtnint(lim\=1,3), forprime(q=p+1,min(sqrtint(lim\p),p^2), forprime(r=q+2,min(lim\(p*q),p^4\q), listput(v,p*q*r)))); Set(v) \\ Charles R Greathouse IV, May 20 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A380438(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(max(0,primepi(min(x//(p*q),p**4//q))-b) for a,p in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,q in enumerate(primerange(p+1,isqrt(x//p)+1),a+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 28 2025
Previous Showing 11-20 of 29 results. Next