cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A054872 Number of (12345, 13245, 21345, 23145, 31245, 32145)-avoiding permutations.

Original entry on oeis.org

1, 1, 2, 6, 24, 114, 600, 3372, 19824, 120426, 749976, 4762644, 30723792, 200778612, 1326360048, 8842981848, 59425117152, 402092408346, 2737156004376, 18732169337604, 128806616999184, 889479590046108, 6165939982059600, 42891532191557736, 299307319060137504
Offset: 0

Views

Author

Elisa Pergola (elisa(AT)dsi.unifi.it), May 26 2000

Keywords

Comments

Hankel transform is A083667, the number of different antisymmetric relations on n labeled points. - Paul Barry, Jun 26 2008
Conjectured to be the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {5>1, 1>2, 1>3, 1>4} of length 5. That is, conjectured to be the number of length n+1 permutations having no subsequences of length 5 in which the fifth element is the largest and the first element is the next largest - Sergey Kitaev, Dec 13 2020
This conjecture has been proven. There are six sets of permutations avoiding six size five permutations including the two sets discussed in this sequence that are known to match this sequence. A further two are conjectured to match this sequence. - Christian Bean, Jul 23 2024

Examples

			G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 114*x^5 + 600*x^6 + 3372*x^7 + 19824*x^8 + ...
		

Crossrefs

Programs

  • Maple
    Set j=3 in the following: f := (x,j)->1-(j+1)*x- sqrt(1-2*(j+1)*x+(j-1)^2*x^2); t := (x,j)->sum(k!*x^k, k=1..(j-1)); s := (x,j)->x^(j-2)*(j-1)!*(f(x,j))/(2)+ t(x,j);
  • Mathematica
    Table[SeriesCoefficient[x*(2-2*x-(1-8*x+4*x^2)^(1/2)),{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 11 2012 *)
    Table[2^(n-1) (LegendreP[n-1, 2] - LegendreP[n-3, 2])/(2n-3), {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • PARI
    x='x+O('x^50); Vec(x*(2-2*x-(1-8*x+4*x^2)^(1/2))) \\ Altug Alkan, Nov 02 2015

Formula

G.f.: 1 + x*(2 - 2*x - (1 - 8*x + 4*x^2)^(1/2)). - corrected by Vaclav Kotesovec, Oct 11 2012
a(n) = 2*A047891(n-1), n>=2. - Philippe Deléham, Aug 17 2007
Recurrence: (n-1)*a(n) = 4*(2*n-5)*a(n-1) - 4*(n-4)*a(n-2). - Vaclav Kotesovec, Oct 11 2012
a(n) ~ sqrt(26*sqrt(3)-45)*(4+2*sqrt(3))^n/(sqrt(8*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 11 2012
From Vladimir Reshetnikov, Nov 01 2015: (Start)
a(n) = 2^(n-1)*(LegendreP_{n-1}(2) - LegendreP_{n-3}(2))/(2*n-3).
For n > 2, a(n) = 6*hypergeom([2-n,3-n], [2], 3).
(End)
G.f. satisfies: A(x) = x * Sum_{n>=0} ( A(x)/x + 4*x + x/A(x) )^n / (2*4^n). - Paul D. Hanna, Mar 24 2016
G.f. satisfies: A(x) = x * Sum_{n>=0} ( A(x)/x + 4*x - x/A(x) )^n / 4^n. - Paul D. Hanna, Mar 24 2016

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 13 2020

A082302 Expansion of g.f.: (1 - 5*x - sqrt(25*x^2 - 14*x + 1))/(2*x).

Original entry on oeis.org

1, 6, 42, 330, 2814, 25422, 239442, 2326434, 23151030, 234784662, 2417832186, 25216231866, 265796560302, 2827138163550, 30306009654690, 327081253546770, 3551148743559270, 38758882760119590, 425024567305557450
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally coefficients of (1 - m*x - sqrt(m^2*x^2 - (2*m + 4)*x + 1))/(2*x) are given by a(0)=1 and, for n > 0, a(n) = (1/n)*Sum_{k=0..n} (m+1)^k*C(n,k)*C(n,k-1).
Hankel transform is 6^C(n+1,2). - Philippe Deléham, Feb 11 2009

Crossrefs

Programs

  • GAP
    Concatenation([1],List([1..20],n->(1/n)*Sum([0..n],k->6^k*Binomial(n,k)*Binomial(n,k-1)))); # Muniru A Asiru, Apr 05 2018
    
  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-5*x-Sqrt(25*x^2-14*x+1))/(2*x))); // G. C. Greubel, Aug 16 2018
  • Maple
    A082302_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 6*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od; convert(a,list)end: A082302_list(18); # Peter Luschny, May 19 2011
    a := n -> `if`(n=0, 1, 6*hypergeom([1 - n, -n], [2], 6)):
    seq(simplify(a(n)), n=0..18); # Peter Luschny, May 22 2017
  • Mathematica
    Table[SeriesCoefficient[(1-5*x-Sqrt[25*x^2-14*x+1])/(2*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,6^k*binomial(n,k)*binomial(n,k-1))/n)
    
  • PARI
    x='x+O('x^99); Vec((1-5*x-(25*x^2-14*x+1)^(1/2))/(2*x)) \\ Altug Alkan, Apr 04 2018
    

Formula

Equals 6*A078018(n) for n > 0.
a(0)=1; for n > 0, a(n) = (1/n)*Sum_{k=0..n} 6^k*C(n, k)*C(n, k-1).
D-finite with recurrence: (n+1)*a(n) + 7*(1-2n)*a(n-1) + 25*(n-2)*a(n-2) = 0. - R. J. Mathar, Dec 08 2011
a(n) ~ sqrt(12 + 7*sqrt(6))*(7 + 2*sqrt(6))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
a(n) = 6*hypergeom([1 - n, -n], [2], 6) for n > 0. - Peter Luschny, May 22 2017
G.f.: 1/(1 - 5*x - x/(1 - 5*x - x/(1 - 5*x - x/(1 - 5*x - x/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Apr 04 2018

A082366 G.f.: (1 - 7*x - sqrt(49*x^2 - 18*x + 1))/(2*x).

Original entry on oeis.org

1, 8, 72, 712, 7560, 84616, 985032, 11814728, 145043208, 1813915912, 23029334856, 296050614216, 3846007927944, 50412893051784, 665925356663496, 8855844075949128, 118467982501096968, 1593108078166843912
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally coefficients of (1 - m*x - sqrt(m^2*x^2 - (2*m+4)*x + 1))/(2*x) are given by a(0)=1 and a(n) = (1/n)*Sum_{k=0..n} (m+1)^k*C(n,k)*C(n,k-1) for n > 0.
Hankel transform is 8^C(n+1,2). - Philippe Deléham, Feb 11 2009

Crossrefs

Programs

  • GAP
    Concatenation([1],List([1..20],n->(1/n)*Sum([0..n],k->8^k*Binomial(n,k)*Binomial(n,k-1)))); # Muniru A Asiru, Apr 05 2018
    
  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-7*x-Sqrt(49*x^2-18*x+1))/(2*x))); // G. C. Greubel, Sep 16 2018
  • Mathematica
    CoefficientList[Series[(1-7x-Sqrt[49x^2-18x+1])/(2x),{x,0,20}],x]  (* Harvey P. Dale, Feb 22 2011 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,8^k*binomial(n,k)*binomial(n,k-1))/n)
    
  • PARI
    x='x+O('x^99); Vec((1-7*x-(49*x^2-18*x+1)^(1/2))/(2*x)) \\ Altug Alkan, Apr 04 2018
    

Formula

a(0)=1; a(n) = (1/n)*Sum_{k=0..n} 8^k*C(n, k)*C(n, k-1) for n > 0.
D-finite with recurrence: (n+1)*a(n) + 9*(1-2n)*a(n-1) + 49*(n-2)*a(n-2) = 0. - R. J. Mathar, Dec 08 2011
a(n) ~ sqrt(16+18*sqrt(2))*(9+4*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - 7*x - x/(1 - 7*x - x/(1 - 7*x - x/(1 - 7*x - x/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Apr 04 2018

A082367 G.f.: (1-8*x-sqrt(64*x^2-20*x+1))/(2*x).

Original entry on oeis.org

1, 9, 90, 981, 11430, 140058, 1782900, 23369805, 313426350, 4281280686, 59360821740, 833312907522, 11820849447420, 169182862497108, 2440064033240040, 35428651752626109, 517446157031236350
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally coefficients of (1-m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/(2*x) are given by a(0)=1 and n>0 a(n)=(1/n)*Sum_{k=0..n} (m+1)^k*C(n,k)*C(n,k-1).
Hankel transform is 9^C(n+1,2). - Philippe Deléham, Feb 11 2009

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-8*x-Sqrt(64*x^2-20*x+1))/(2*x))); // G. C. Greubel, Sep 16 2018
  • Maple
    f:= gfun:-rectoproc({64*n*a(n)+(-30-20*n)*a(1+n)+(3+n)*a(n+2), a(0) = 1, a(1) = 9}, a(n), remember):
    map(f, [$0..30]); # Robert Israel, Mar 16 2018
  • Mathematica
    Table[SeriesCoefficient[(1-8*x-Sqrt[64*x^2-20*x+1])/(2*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,9^k*binomial(n,k)*binomial(n,k-1))/n)
    
  • PARI
    x='x+O('x^99); Vec((1-8*x-(64*x^2-20*x+1)^(1/2))/(2*x)) \\ Altug Alkan, Apr 04 2018
    

Formula

a(0)=1; for n > 0, a(n) = (1/n)*Sum_{k=0..n} 9^k*C(n, k)*C(n, k-1).
D-finite with recurrence: (n+1)*a(n) + 10*(1-2n)*a(n-1) + 64*(n-2)*a(n-2) = 0. - R. J. Mathar, Dec 08 2011 Recurrence follows from the D.E. (x-20*x^2+64*x^3)*y' + (1-10*x)*y - 1 - 8*x = 0 satisfied by the g.f.. - Robert Israel, Mar 16 2018
a(n) ~ sqrt(3)*2^(4*n+1)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - 8*x - x/(1 - 8*x - x/(1 - 8*x - x/(1 - 8*x - x/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Apr 04 2018

A121576 Riordan array (2-2*x-sqrt(1-8*x+4*x^2), (1-2*x-sqrt(1-8*x+4*x^2))/2).

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 24, 24, 8, 1, 114, 123, 51, 11, 1, 600, 672, 312, 87, 14, 1, 3372, 3858, 1914, 618, 132, 17, 1, 19824, 22992, 11904, 4218, 1068, 186, 20, 1, 120426, 140991, 75183, 28383, 8043, 1689, 249, 23, 1, 749976, 884112, 481704, 190347, 58398, 13929, 2508, 321, 26, 1
Offset: 0

Views

Author

Paul Barry, Aug 08 2006

Keywords

Comments

Inverse of Riordan array (1/(1+2*x), x*(1-x)/(1+2*x)).
Row sums are A047891; first column is A054872. Signed version given by A121575.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [2, 1, 3, 1, 3, 1, 3, 1, 3, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 09 2006

Examples

			Triangle begins
     1;
     2,    1;
     6,    5,    1;
    24,   24,    8,   1;
   114,  123,   51,  11,   1;
   600,  672,  312,  87,  14,  1;
  3372, 3858, 1914, 618, 132, 17, 1;
From _Paul Barry_, Apr 27 2009: (Start)
Production matrix is
  2, 1,
  2, 3, 1,
  2, 3, 3, 1,
  2, 3, 3, 3, 1,
  2, 3, 3, 3, 3, 1,
  2, 3, 3, 3, 3, 3, 1,
  2, 3, 3, 3, 3, 3, 3, 1
In general, the production matrix of the inverse of (1/(1-rx),x(1-x)/(1-rx)) is
  -r, 1,
  -r, 1 - r, 1,
  -r, 1 - r, 1 - r, 1,
  -r, 1 - r, 1 - r, 1 - r, 1,
  -r, 1 - r, 1 - r, 1 - r, 1 - r, 1,
  -r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1,
  -r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1 (End)
		

Programs

  • Magma
    [[(&+[ 2^j*Binomial(n,j)*Binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1))/2: j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
  • Mathematica
    Flatten[Table[Sum[Binomial[n,i]Binomial[2n-k-i,n](4-9i+3i^2-6(i-1)n+2n^2)/((n-i+2)(n-i+1))2^i,{i,0,n-k}]/2,{n,0,8},{k,0,n}]]
    (* Emanuele Munarini, May 18 2011 *)
  • Maxima
    create_list(sum(binomial(n,i)*binomial(2*n-k-i,n)*(4-9*i+3*i^2-6*(i-1)*n+2*n^2)/((n-i+2)*(n-i+1))*2^i,i,0,n-k)/2,n,0,9,k,0,n); /* Emanuele Munarini, May 18 2011 */
    
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0, n-k, 2^j*binomial(n,j) *binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1)))/2, ", "))) \\ G. C. Greubel, Nov 02 2018
    

Formula

T(n,k) = [x^(n-k)](1-2*x-2*x^2)*(1+2*x)^n/(1-x)^(n+1) = (1/2)*Sum_{i=0..n-k} binomial(n,i) * binomial(2*n-k-i,n) * (4 - 9*i + 3*i^2 - 6*(i-1)*n + 2*n^2)/((n-i+2)*(n-i+1))*2^i. - Emanuele Munarini, May 18 2011

A219535 G.f. satisfies A(x) = 1 + x*(2*A(x)^2 + A(x)^3).

Original entry on oeis.org

1, 3, 21, 192, 2001, 22539, 267276, 3287496, 41556585, 536565225, 7046232285, 93820316412, 1263673602300, 17186898452772, 235709926636296, 3256050894487824, 45263067114496665, 632721425905230213, 8888476706476318047, 125418490224196533096, 1776734673565844413929
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2012

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 21*x^2 + 192*x^3 + 2001*x^4 + 22539*x^5 +...
Related expansions:
A(x)^2 = 1 + 6*x + 51*x^2 + 510*x^3 + 5595*x^4 + 65148*x^5 +...
A(x)^3 = 1 + 9*x + 90*x^2 + 981*x^3 + 11349*x^4 + 136980*x^5 +...
The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
G(x) = 1 + 3*x + 12*x^2 + 57*x^3 + 300*x^4 + 1686*x^5 +...+ A047891(n+1)*x^n +...
		

Crossrefs

Column k=2 of A336575.

Programs

  • Mathematica
    CoefficientList[1/x*InverseSeries[Series[2*x^2/(1-2*x-Sqrt[1-8*x+4*x^2]), {x, 0, 21}], x],x] (* Vaclav Kotesovec, Dec 28 2013 *)
  • PARI
    /* Formula A(x) = 1 + x*(2*A(x)^2 + A(x)^3): */
    {a(n)=my(A=1);for(i=1,n,A=1+x*(2*A^2+A^3) +x*O(x^n));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula using Series Reversion: */
    {a(n)=my(A=1,G=(1-2*x-sqrt(1-8*x+4*x^2+x^3*O(x^n)))/(2*x));A=(1/x)*serreverse(x/G);polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(n, k)*binomial(2*n+k+1, n)/(2*n+k+1)); \\ Seiichi Manyama, Jul 28 2020
    
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(2*n+1, k)*binomial(3*n-k, n-k))/(2*n+1); \\ Seiichi Manyama, Jul 28 2020

Formula

Let G(x) = (1-2*x - sqrt(1 - 8*x + 4*x^2)) / (2*x), then g.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion(x/G(x)),
(2) A(x) = G(x*A(x)) and G(x) = A(x/G(x)),
where x*G(x) is the g.f. of A047891.
Recurrence: 2*n*(2*n+1)*(11*n - 16)*a(n) = (649*n^3 - 1593*n^2 + 1130*n - 240)*a(n-1) + 16*(n-2)*(2*n-3)*(11*n-5)*a(n-2). - Vaclav Kotesovec, Dec 28 2013
a(n) ~ sqrt((33+17*sqrt(33))/11) * ((59+11*sqrt(33))/8)^n / (4 * sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Dec 28 2013
From Seiichi Manyama, Jul 28 2020: (Start)
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n,k) * binomial(2*n+k+1,n)/(2*n+k+1).
a(n) = (1/(2*n+1)) * Sum_{k=0..n} 2^k * binomial(2*n+1,k) * binomial(3*n-k,n-k). (End)
From Seiichi Manyama, Aug 10 2023: (Start)
a(n) = (1/n) * Sum_{k=0..n-1} (-2)^k * 3^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 3^k * binomial(n,k) * binomial(2*n,k-1) for n > 0. (End)

A371391 Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+2*x)^2 ).

Original entry on oeis.org

1, 5, 34, 269, 2326, 21314, 203428, 2000957, 20142862, 206524790, 2149261852, 22644243218, 241061343004, 2589022298084, 28019201644744, 305254481274269, 3345077342003134, 36846738570089774, 407754101877613804, 4531049315843043974, 50538820796852529364
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^k*Binomial[2*(n+1), k]*Binomial[2*n-k, n-k]/(n+1), {k,0,n}], {n,0,30}] (* Vaclav Kotesovec, Jul 31 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+2*x)^2)/x)
    
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(2*(n+1), k)*binomial(2*n-k, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(2*(n+1),k) * binomial(2*n-k,n-k).
a(n) = (1/(n+1)) * [x^n] ( (1+2*x)^2 / (1-x) )^(n+1). - Seiichi Manyama, Jul 31 2025
a(n) ~ 2^(2*n-2) * 3^(n+2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 31 2025

A348793 G.f. A(x) satisfies A(x) = (1 + x * A(x)^3) / (1 - 2 * x).

Original entry on oeis.org

1, 3, 15, 102, 807, 6951, 63240, 597864, 5815167, 57815553, 584919951, 6002197914, 62321630100, 653553174756, 6912106219176, 73642451396160, 789642274208271, 8515008918555573, 92281921130853213, 1004600177464845450, 10980406558088695599, 120454756647900759543
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[] = 0; Do[A[x] = (1 + x A[x]^3)/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = 2 a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 21}]
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(n, k)*binomial(n+2*k+1, n)/(n+2*k+1)); \\ Seiichi Manyama, Jul 24 2023

Formula

a(0) = 1; a(n) = 2 * a(n-1) + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) ~ sqrt((2 + s^3)/(3*Pi*s*(1 - 2*r))) / (2*n^(3/2)*r^n), where r = (2 + (3*(-2 + sqrt(6))^(1/3))/2^(2/3) - 3/(2*(-2 + sqrt(6)))^(1/3)) / 4 = 0.084819663336750180604484695162155813902734598764355... and s = 1/2 + (-sqrt(2) + sqrt(3))/(2^(5/6)*(-2 + sqrt(6))^(1/3)) + 1/(2*(-2 + sqrt(6)))^(2/3) = 1.8064439323587723772036249693148814564378856424032... - Vaclav Kotesovec, Nov 04 2021
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n,k) * binomial(n+2*k+1,n) / (n+2*k+1). - Seiichi Manyama, Jul 24 2023

A172455 The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
		

Crossrefs

Cf. A000079 S(1,1,-1), A000108 S(0,0,1), A000142 S(1,-1,0), A000244 S(2,1,-2), A000351 S(4,1,-4), A000400 S(5,1,-5), A000420 S(6,1,-6), A000698 S(2,-3,1), A001710 S(1,1,0), A001715 S(1,2,0), A001720 S(1,3,0), A001725 S(1,4,0), A001730 S(1,5,0), A003319 S(1,-2,1), A005411 S(2,-4,1), A005412 S(2,-2,1), A006012 S(-1,2,2), A006318 S(0,1,1), A047891 S(0,2,1), A049388 S(1,6,0), A051604 S(3,1,0), A051605 S(3,2,0), A051606 S(3,3,0), A051607 S(3,4,0), A051608 S(3,5,0), A051609 S(3,6,0), A051617 S(4,1,0), A051618 S(4,2,0), A051619 S(4,3,0), A051620 S(4,4,0), A051621 S(4,5,0), A051622 S(4,6,0), A051687 S(5,1,0), A051688 S(5,2,0), A051689 S(5,3,0), A051690 S(5,4,0), A051691 S(5,5,0), A053100 S(6,1,0), A053101 S(6,2,0), A053102 S(6,3,0), A053103 S(6,4,0), A053104 S(7,1,0), A053105 S(7,2,0), A053106 S(7,3,0), A062980 S(6,-8,1), A082298 S(0,3,1), A082301 S(0,4,1), A082302 S(0,5,1), A082305 S(0,6,1), A082366 S(0,7,1), A082367 S(0,8,1), A105523 S(0,-2,1), A107716 S(3,-4,1), A111529 S(1,-3,2), A111530 S(1,-4,3), A111531 S(1,-5,4), A111532 S(1,-6,5), A111533 S(1,-7,6), A111546 S(1,0,1), A111556 S(1,1,1), A143749 S(0,10,1), A146559 S(1,1,-2), A167872 S(2,-3,2), A172450 S(2,0,-1), A172485 S(-1,-2,3), A177354 S(1,2,1), A292186 S(4,-6,1), A292187 S(3, -5, 1).

Programs

  • Mathematica
    a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • PARI
    S(v1, v2, v3, N=16) = {
      my(a = vector(N)); a[1] = 1;
      for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
    };
    S(6,-4,-1)
    \\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
    \\ Gheorghe Coserea, May 12 2017

Formula

a(n) = (6*n - 4) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 7*x / (1 - 5*x / (1 - 13*x / (1 - 11*x / (1 - 19*x / (1 - 17*x / ... )))))). - Michael Somos, Jan 03 2013
a(n) = 3/(2*Pi^2)*int((4*x)^((3*n-1)/2)/(Ai'(x)^2+Bi'(x)^2), x=0..inf), where Ai'(x), Bi'(x) are the derivatives of the Airy functions. [Vladimir Reshetnikov, Sep 24 2013]
a(n) ~ 6^n * (n-1)! / (2*Pi) [Martin + Kearney, 2011, p.16]. - Vaclav Kotesovec, Jan 19 2015
6*x^2*y' = y^2 - (2*x-1)*y - x, where y(x) = Sum_{n>=1} a(n)*x^n. - Gheorghe Coserea, May 12 2017
G.f.: x/(1 - 2*x - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... Cf. A062980. - Peter Bala, May 21 2017

A364432 G.f. satisfies A(x) = 1 + x*A(x)*(2 + A(x)^3).

Original entry on oeis.org

1, 3, 18, 162, 1728, 20169, 249318, 3207600, 42500700, 576012060, 7947785448, 111269613006, 1576658688480, 22568473199358, 325855352769588, 4740157737123696, 69405108247439676, 1022070746845708740, 15127922880893671704, 224931239520535651464
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2023

Keywords

Crossrefs

Programs

  • Maple
    A364432 := proc(n)
        add(2^(n-k)* binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1),k=0..n) ;
    end proc:
    seq(A364432(n),n=0..70); # R. J. Mathar, Jul 25 2023
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(n, k)*binomial(n+3*k+1, n)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1).
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) +2*(-74*n^3 -375*n^2+ 665*n -252)*a(n-1) +12*(-337*n^3 +1941*n^2 -2984*n +1092)*a(n-2) +144*(-70*n^3 +861*n^2 -3347*n +4152)*a(n-3) +432*(n-4)*(31*n^2 -314*n +735)*a(n-4) -2592*(10*n-51) *(n-4)*(n-5)*a(n-5) +15552*(n-5)*(n-6) *(n-4)*a(n-6)=0. - R. J. Mathar, Jul 25 2023
Previous Showing 11-20 of 28 results. Next