A102662
Triangle read by rows: T(1,1)=1,T(2,1)=1,T(2,2)=3, T(k-1,r-1)+T(k-1,r)+T(k-2,r-1).
Original entry on oeis.org
1, 1, 3, 1, 5, 3, 1, 7, 11, 3, 1, 9, 23, 17, 3, 1, 11, 39, 51, 23, 3, 1, 13, 59, 113, 91, 29, 3, 1, 15, 83, 211, 255, 143, 35, 3, 1, 17, 111, 353, 579, 489, 207, 41, 3, 1, 19, 143, 547, 1143, 1323, 839, 283, 47, 3, 1, 21, 179, 801, 2043, 3045, 2651, 1329, 371, 53, 3, 1, 23, 219
Offset: 1
Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 03 2005
Triangle begins:
1
1 3
1 5 3
1 7 11 3
1 9 23 17 3
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
-
a102662 n k = a102662_tabl !! n !! k
a102662_row n = a102662_tabl !! n
a102662_tabl = [1] : [1,3] : f [1] [1,3] where
f xs ys = zs : f ys zs where
zs = zipWith (+) ([0] ++ xs ++ [0]) $
zipWith (+) ([0] ++ ys) (ys ++ [0])
-- Reinhard Zumkeller, Feb 23 2012
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207624 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A102662 *)
(* Clark Kimberling, Feb 20 2012 *)
-
T(k,r)=if(r>k,0,if(k==1,1,if(k==2,if(r==1,1,3),if(r==1,1,if(r==k,3,T(k-1,r-1)+T(k-1,r)+T(k-2,r-1))))))
BM(n) = M=matrix(n,n);for(i=1,n, for(j=1,n,M[i,j]=T(i,j)));M
M=BM(10)
for(i=1,10,s=0;for(j=1,i,s+=M[i,j]);print1(s,","))
A117584
Generalized Pellian triangle.
Original entry on oeis.org
1, 1, 2, 1, 3, 5, 1, 4, 7, 12, 1, 5, 9, 17, 29, 1, 6, 11, 22, 41, 70, 1, 7, 13, 27, 53, 99, 169, 1, 8, 15, 32, 65, 128, 239, 408, 1, 9, 17, 37, 77, 157, 309, 577, 985, 1, 10, 19, 42, 89, 186, 379, 746, 1393, 2378
Offset: 1
First few rows of the triangle are:
1;
1, 2;
1, 3, 5;
1, 4, 7, 12;
1, 5, 9, 17, 29;
1, 6, 11, 22, 41, 70;
1, 7, 13, 27, 53, 99, 169;
...
The triangle rows are antidiagonals of the generalized Pellian array:
1, 2, 5, 12, 29, ...
1, 3, 7, 17, 41, ...
1, 4, 9, 22, 53, ...
1, 5, 11, 27, 65, ...
...
For example, in the row (1, 5, 11, 27, 65, ...), 65 = 2*27 + 11.
-
P:= func< n | Round( ((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2)) ) >;
T:= func< n,k | P(k) + (n-1)*P(k-1) >;
[T(n-k+1, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 05 2021
-
T[n_, k_]:= Fibonacci[k, 2] + (n-1)*Fibonacci[k-1, 2];
Table[T[n-k+1, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 05 2021 *)
-
def T(n,k): return lucas_number1(k,2,-1) + (n-1)*lucas_number1(k-1,2,-1)
flatten([[T(n-k+1, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 05 2021
A209704
Triangle of coefficients of polynomials v(n,x) jointly generated with A209703; see the Formula section.
Original entry on oeis.org
1, 3, 1, 4, 3, 2, 5, 6, 8, 3, 6, 10, 18, 14, 5, 7, 15, 33, 38, 27, 8, 8, 21, 54, 81, 83, 49, 13, 9, 28, 82, 150, 197, 170, 89, 21, 10, 36, 118, 253, 401, 448, 342, 159, 34, 11, 45, 163, 399, 736, 999, 987, 671, 282, 55, 12, 55, 218, 598, 1253, 1988, 2387, 2106
Offset: 1
First five rows:
1
3...1
4...3....2
5...6....8....3
6...10...18...14...5
First three polynomials v(n,x): 1, 3 + x , 4 + 3x + 2x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209703 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209704 *)
A266505
a(n) = 2*a(n - 2) + a(n - 4) with a(0) = -1, a(1) = 1, a(2) = 3, a(3) = 5.
Original entry on oeis.org
-1, 1, 3, 5, 5, 11, 13, 27, 31, 65, 75, 157, 181, 379, 437, 915, 1055, 2209, 2547, 5333, 6149, 12875, 14845, 31083, 35839, 75041, 86523, 181165, 208885, 437371, 504293, 1055907, 1217471, 2549185, 2939235, 6154277, 7095941, 14857739, 17131117, 35869755, 41358175, 86597249, 99847467
Offset: 0
Cf.
A000129,
A001333,
A002203,
A002965,
A006451,
A006452,
A002965,
A038761,
A038762,
A048654,
A048655,
A054490,
A078343,
A098586,
A098790,
A100525,
A101386,
A135532,
A216134,
A216162,
A253811,
A255236,
A266504,
A266505,
A266507.
-
I:=[-1,1,3,5]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
-
a:=proc(n) option remember; if n=0 then -1 elif n=1 then 1 elif n=2 then 3 elif n=3 then 5 else 2*a(n-2)+a(n-4); fi; end: seq(a(n), n=0..50); # Wesley Ivan Hurt, Jan 01 2016
-
LinearRecurrence[{0, 2, 0, 1}, {-1, 1, 3, 5}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
Table[SeriesCoefficient[(-1 + 3 x) (1 + x)^2/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 42}] (* Michael De Vlieger, Dec 31 2015 *)
-
my(x='x+O('x^40)); Vec((-1+3*x)*(1+x)^2/(1-2*x^2-x^4)) \\ G. C. Greubel, Jul 26 2018
A048695
Generalized Pellian with second term equal to 8.
Original entry on oeis.org
1, 8, 17, 42, 101, 244, 589, 1422, 3433, 8288, 20009, 48306, 116621, 281548, 679717, 1640982, 3961681, 9564344, 23090369, 55745082, 134580533, 324906148, 784392829, 1893691806, 4571776441, 11037244688
Offset: 0
-
with(combinat): a:=n->6*fibonacci(n-1,2)+fibonacci(n,2): seq(a(n), n=1..26); # Zerinvary Lajos, Apr 04 2008
-
a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{7},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{2,1},{1,8},30] (* Harvey P. Dale, May 01 2013 *)
A117895
Triangle T(n, k) = (k-n)*A000129(k+1) + (3*n-3*k+1)*A000129(k) with T(n,0) = 1, for 0 <= k <= n-1, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 3, 3, 1, 4, 4, 8, 1, 5, 5, 11, 19, 1, 6, 6, 14, 26, 46, 1, 7, 7, 17, 33, 63, 111, 1, 8, 8, 20, 40, 80, 152, 268, 1, 9, 9, 23, 47, 97, 193, 367, 647, 1, 10, 10, 26, 54, 114, 234, 466, 886, 1562, 1, 11, 11, 29, 61, 131, 275, 565, 1125, 2139, 3771, 1, 12, 12, 32, 68, 148, 316, 664, 1364, 2716, 5164, 9104
Offset: 0
First few rows of the triangle are:
1;
1, 2;
1, 3, 3;
1, 4, 4, 8;
1, 5, 5, 11, 19;
1, 6, 6, 14, 26, 46;
1, 7, 7, 17, 33, 63, 111;
1, 8, 8, 20, 40, 80, 152, 268;
...
Row 4, (1, 4, 4, 8) is produced by adding (0, 1, 1, 3) to row 4 of A117894: (1, 3, 3, 5).
-
Pell:= func< n | Round(((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2))) >;
[k eq 0 select 1 else (k-n)*Pell(k+1) + (3*n-3*k+1)*Pell(k): k in [0..n-1], n in [0..12]]; // G. C. Greubel, Sep 27 2021
-
T[n_, k_]:= T[n, k]= If[k==0, 1, (k-n)*Fibonacci[k+1, 2] + (3*n-3*k +1)*Fibonacci[k, 2]]; Table[T[n, k], {n,0,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Sep 27 2021 *)
-
def P(n): return lucas_number1(n, 2, -1)
def A117895(n,k): return 1 if (k==0) else (k-n)*P(k+1) + (3*n-3*k+1)*P(k)
flatten([[A117895(n,k) for k in (0..n-1)] for n in (0..12)]) # G. C. Greubel, Sep 27 2021
A182001
Riordan array ((2*x+1)/(1-x-x^2), x/(1-x-x^2)).
Original entry on oeis.org
1, 3, 1, 4, 4, 1, 7, 9, 5, 1, 11, 20, 15, 6, 1, 18, 40, 40, 22, 7, 1, 29, 78, 95, 68, 30, 8, 1, 47, 147, 213, 185, 105, 39, 9, 1, 76, 272, 455, 466, 320, 152, 49, 10, 1, 123, 495, 940, 1106, 891, 511, 210, 60, 11, 1, 199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1
Offset: 0
Triangle begins :
1;
3, 1;
4, 4, 1;
7, 9, 5, 1;
11, 20, 15, 6, 1;
18, 40, 40, 22, 7, 1;
29, 78, 95, 68, 30, 8, 1;
47, 147, 213, 185, 105, 39, 9, 1;
76, 272, 455, 466, 320, 152, 49, 10, 1;
123, 495, 940, 1106, 891, 511, 210, 60, 11, 1;
199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1;
(0, 3, -5/3, -1/3, 0, 0, ...) DELTA (1, 0, -2/3, 2/3, 0, 0, ...) begins:
1;
0, 1;
0, 3, 1;
0, 4, 4, 1;
0, 7, 9, 5, 1;
0, 11, 20, 15, 6, 1;
0, 18, 40, 40, 22, 7, 1;
-
function T(n,k)
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
elif k eq 0 then return Lucas(n+1);
else return T(n-1,k) + T(n-1,k-1) + T(n-2,k);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
-
with(combinat);
T:= proc(n, k) option remember;
if k<0 or k>n then 0
elif k=n then 1
elif k=0 then fibonacci(n+2) + fibonacci(n)
else T(n-1,k) + T(n-1,k-1) + T(n-2,k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
-
With[{m = 10}, CoefficientList[CoefficientList[Series[(1+2*x)/(1-x-y*x-x^2), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 18 2020 *)
T[n_, k_]:= T[n, k]= If[k<0||k>n, 0, If[k==n, 1, If[k==0, LucasL[n+1], T[n-1, k] + T[n-1, k-1] + T[n-2, k] ]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
a(29) corrected by and a(55)-a(65) from
Georg Fischer, Feb 18 2020
A375726
a(n) = a(n-1) + 3*a(n-2) + a(n-3) with a(0) = 1, a(1) = 3, a(2) = 6.
Original entry on oeis.org
1, 3, 6, 16, 37, 91, 218, 528, 1273, 3075, 7422, 17920, 43261, 104443, 252146, 608736, 1469617, 3547971, 8565558, 20679088, 49923733, 120526555, 290976842, 702480240, 1695937321, 4094354883, 9884647086, 23863649056, 57611945197, 139087539451, 335787024098
Offset: 0
For n = 2, the a(2) = 6 subsets of {1, 2, 3, 4} are {}, {1}, {2}, {3}, {4}, {1, 4}.
-
LinearRecurrence[{1, 3, 1}, {1, 3, 6}, 31] (* Hugo Pfoertner, Aug 26 2024 *)
-
my(a=1, b=3, c=6); for(n=1, 31, print1(a, ", "); my(d=a+3*b+c); a=b; b=c; c=d)
A228894
Nodes of tree generated as follows: (2,1) is an edge, and if (x,y) is an edge, then (y,y+x) and (y,2y+x) are edges.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 35, 37, 40, 41, 43, 44, 47, 48, 51, 52, 53, 55, 56, 57, 58, 60, 61, 63, 64, 65, 67, 68, 69, 71, 75, 76, 78, 79, 80, 83, 84, 85, 87, 88, 89, 91, 92, 93, 97, 98, 99
Offset: 1
Taking the first generation of edges to be G(1) = {(2,1)}, the edge (2,1) grows G(2) = {(1,3), (1,4)}, which grows G(3) = {(3,4), (3,7), (4,5), (4,9)}, ... Expelling duplicate nodes and sorting leave (1,2,3,4,5,7,9,...).
-
f[x_, y_] := {{y, x + y}, {y, x + 2 y}}; x = 2; y = 1; t = {{x, y}};
u = Table[t = Flatten[Map[Apply[f, #] &, t], 1], {12}]; v = Flatten[u];
w = Flatten[Prepend[Table[v[[2 k]], {k, 1, Length[v]/2}], {x, y}]];
Sort[Union[w]]
Original entry on oeis.org
1, 7, 20, 52, 129, 315, 764, 1848, 4465, 10783, 26036, 62860, 151761, 366387, 884540, 2135472, 5155489, 12446455, 30048404, 72543268, 175134945, 422813163, 1020761276, 2464335720, 5949432721, 14363201167, 34675835060, 83714871292, 202105577649, 487926026595
Offset: 0
-
Accumulate[LinearRecurrence[{2,1},{1,6},30]] (* or *) LinearRecurrence[ {3,-1,-1},{1,7,20},40] (* Harvey P. Dale, Mar 29 2013 *)
Comments