cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A245113 G.f. A(x) satisfies A(x)^2 = 1 + 4*x*A(x)^6.

Original entry on oeis.org

1, 2, 22, 340, 6118, 120060, 2492028, 53798888, 1195684230, 27175425004, 628705751828, 14756641134872, 350529497005532, 8410852483002200, 203561027031883320, 4963404936414528720, 121810229481173225670, 3006555636255509030220, 74585744314812449403300, 1858695101618327423328312
Offset: 0

Views

Author

Paul D. Hanna, Jul 31 2014

Keywords

Comments

Radius of convergence of g.f. A(x) is r = 1/27 where A(r) = sqrt(3/2).

Examples

			G.f.: A(x) = 1 + 2*x + 22*x^2 + 340*x^3 + 6118*x^4 + 120060*x^5 + ...
where A(x)^2 = 1 + 4*x*A(x)^6:
A(x)^2 = 1 + 4*x + 48*x^2 + 768*x^3 + 14080*x^4 + 279552*x^5 + ...
A(x)^6 = 1 + 12*x + 192*x^2 + 3520*x^3 + 69888*x^4 + 1462272*x^5 + ...
Related series:
A(x)^5 = 1 + 10*x + 150*x^2 + 2660*x^3 + 51750*x^4 + 1068012*x^5 + ...
A(x)^10 = 1 + 20*x + 400*x^2 + 8320*x^3 + 179200*x^4 + 3969024*x^5 + ...
where A(x) = sqrt(1 + 4*x^2*A(x)^10) + 2*x*A(x)^5.
		

Crossrefs

Programs

  • Maple
    A245113:=n->4^n*binomial((6*n-1)/2,n)/(4*n+1): seq(A245113(n), n=0..30); # Wesley Ivan Hurt, Aug 11 2015
  • Mathematica
    Table[4^n*Binomial[(6 n - 1)/2, n]/(4 n + 1), {n, 0, 20}] (* Wesley Ivan Hurt, Aug 11 2015 *)
  • PARI
    /* From A(x)^2 = 1 + 4*x*A(x)^6 : */
    {a(n) = local(A=1+x);for(i=1,n,A=sqrt(1 + 4*x*A^6 +x*O(x^n)));polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = 4^n * binomial((6*n - 1)/2, n) / (4*n + 1)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* From A(x) = sqrt(1 + 4*x^2*A(x)^10) + 2*x*A(x)^5 : */
    {a(n) = local(A=1+x);for(i=1,n,A = sqrt(1 + 4*x^2*A^10 +x*O(x^n)) + 2*x*A^5);polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = 4^n * binomial((6*n - 1)/2, n) / (4*n + 1).
G.f. A(x) satisfies A(x) = sqrt(1 + 4*x^2*A(x)^10) + 2*x*A(x)^5.
G.f.: A(x) = sqrt(D(4*x)), where D(x) is the g.f. of A001764. - Werner Schulte, Aug 10 2015
From Karol A. Penson, Mar 19 2024: (Start)
a(n) = 4^n*binomial(3*n+1/2,n)/(6*n+1).
G.f.: 3F2([1/6, 1/2, 5/6], [3/4, 5/4], 27*x).
G.f.: sqrt(2)*sqrt((-(sqrt(1 - 27*x) + 3*i*sqrt(3)*sqrt(x))^(1/3) + (sqrt(1 - 27*x) - 3*i*sqrt(3)*sqrt(x))^(1/3))*i)*3^(3/4)/(6*x^(1/4)), where i is the imaginary unit.
a(n) = Integral_{x=0...27} x^n*W(x), where W(x) = h1(x) + h2(x) + h3(x) and
h1(x) = 2^(2/3)*3F2([-1/12, 1/6, 5/12], [1/3, 2/3], x/27)/(4*Pi*x^(5/6));
h2(x) = -3F2([1/4, 1/2, 3/4], [2/3, 4/3], x/27)/(12*Pi*sqrt(x));
h3(x) = -2^(1/3)*3F2([7/12, 5/6, 13/12], [4/3, 5/3], x/27)/(576*Pi*x^(1/6)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem on x = (0, 27). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 27. For x -> 27, W'(x) tends to -infinity. (End)
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^10). - Seiichi Manyama, Jun 20 2025
a(n) ~ 27^n / (4 * n^(3/2) * sqrt(2*Pi)). - Amiram Eldar, Sep 04 2025

A187359 Catalan trisection: A000108(3*n + 2)/2, n>=0.

Original entry on oeis.org

1, 21, 715, 29393, 1337220, 64822395, 3282060210, 171529806825, 9183676536076, 501121108325684, 27767032438524099, 1558142747453650631, 88366931393503350700, 5056959295818949067010, 291650059796498346544020, 16934386878595523443214745, 989130828878080326811887228, 58078935727891217125276922940, 3426228463922436748774829232156, 202972497563788492865321721683556
Offset: 0

Views

Author

Wolfdieter Lang, Mar 09 2011

Keywords

Comments

See the comment under A187357 for the o.g.f.s of the general trisection of a sequence.
The sequence C(3*n+2) starts as 2, 42, 1430, 58786, 2674440, 129644790, 6564120420, 343059613650, ...

Crossrefs

Cf. A000108, A024492, A048990, A187357 (C(3*n)), A187358 (C(3*n+1)).

Programs

  • Mathematica
    Table[CatalanNumber[3*n+2]/2, {n, 0, 20}] (* Amiram Eldar, Mar 16 2022 *)

Formula

a(n) = C(3*n+2)/2, n>=0, with C(n) = A000108(n).
O.g.f.: (3 - sqrt(1 - 4*x^(1/3)) - sqrt(2)*sqrt(sqrt(1 + 4*x^(1/3) + 16*x^(2/3)) +
(1 + 2*x^(1/3))))/(12*x).
From Ilya Gutkovskiy, Jan 21 2017: (Start)
E.g.f.: 3F3(5/6,7/6,3/2; 4/3,5/3,2; 64*x).
a(n) ~ 8^(2*n+1)/(3*sqrt(3*Pi)*n^(3/2)). (End)
Sum_{n>=0} a(n)/4^n = 1 - sqrt(3+2*sqrt(3))/3. - Amiram Eldar, Mar 16 2022
a(n) = (1/2)*Product_{1 <= i <= j <= 3*n+1} (3*i + j + 2)/(3*i + j - 1). - Peter Bala, Feb 22 2023

A235534 a(n) = binomial(6*n, 2*n) / (4*n + 1).

Original entry on oeis.org

1, 3, 55, 1428, 43263, 1430715, 50067108, 1822766520, 68328754959, 2619631042665, 102240109897695, 4048514844039120, 162250238001816900, 6568517413771094628, 268225186597703313816, 11034966795189838872624, 456949965738717944767791
Offset: 0

Views

Author

Bruno Berselli, Jan 12 2014

Keywords

Comments

This is the case l=4, k=2 of binomial((l+k)*n,k*n)/((l*n+1)/gcd(k,l*n+1)), see Theorem 1.1 in Zhi-Wei Sun's paper.
First bisection of A001764.

Crossrefs

Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), this sequence (l=4, k=2), A235536 (l=6, k=2), A187357 (l=3, k=3), A235535 (l=6, k=3).

Programs

  • Magma
    l:=4; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
  • Mathematica
    Table[Binomial[6 n, 2 n]/(4 n + 1), {n, 0, 20}]

Formula

a(n) = A047749(4*n-2) for n>0.
From Ilya Gutkovskiy, Jun 21 2018: (Start)
G.f.: 4F3(1/6,1/3,2/3,5/6; 1/2,3/4,5/4; 729*x/16).
a(n) ~ 3^(6*n+1/2)/(sqrt(Pi)*2^(4*n+7/2)*n^(3/2)). (End)

A235535 a(n) = binomial(9*n, 3*n) / (6*n + 1).

Original entry on oeis.org

1, 12, 1428, 246675, 50067108, 11124755664, 2619631042665, 642312451217745, 162250238001816900, 41932353590942745504, 11034966795189838872624, 2946924270225408943665279, 796607831560617902288322405, 217550867863011281855594752680
Offset: 0

Views

Author

Bruno Berselli, Jan 12 2014

Keywords

Comments

This is the case l=6, k=3 of binomial((l+k)*n,k*n)/((l*n+1)/gcd(k,l*n+1)), see Theorem 1.1 in Zhi-Wei Sun's paper.
Also, the sequence follows A002296 and A235536, namely binomial(7*n,n)/(6*n+1) and binomial(8*n,2*n)/(6*n+1); naturally, even binomial(10*n,4*n)/(6*n+1) is always integer.

Crossrefs

Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), A235534 (l=4, k=2), A235536 (l=6, k=2), A187357 (l=3, k=3), this sequence (l=6, k=3).

Programs

  • Magma
    l:=6; k:=3; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* here l is divisible by all the prime factors of k */
  • Maple
    seq(binomial(9*n,3*n)/(6*n+1), n=0..30); # Robert Israel, Feb 15 2021
  • Mathematica
    Table[Binomial[9 n, 3 n]/(6 n + 1), {n, 0, 20}]

Formula

a(n) = A001764(3*n) = A047749(6*n).
From Ilya Gutkovskiy, Jun 21 2018: (Start)
G.f.: 6F5(1/9,2/9,4/9,5/9,7/9,8/9; 1/3,1/2,2/3,5/6,7/6; 19683*x/64).
a(n) ~ 3^(9*n-1)/(sqrt(Pi)*4^(3*n+1)*n^(3/2)). (End)
D-finite with recurrence 8*(6*n + 5)*(2*n + 1)*(n + 1)*(3*n + 2)*(3*n + 1)*(6*n + 7)*a(n + 1) = 3*(9*n + 8)*(9*n + 7)*(9*n + 5)*(9*n + 4)*(9*n + 2)*(9*n + 1)*a(n). - Robert Israel, Feb 15 2021

A206300 Expand the real root of y^3 - y + x in powers of x, then multiply coefficient of x^n by -4^n to get integers.

Original entry on oeis.org

-1, 2, 6, 32, 210, 1536, 12012, 98304, 831402, 7208960, 63740820, 572522496, 5209363380, 47915728896, 444799488600, 4161823309824, 39209074920090, 371626340253696, 3541117629057540
Offset: 0

Views

Author

Roger L. Bagula, Feb 05 2012

Keywords

Comments

Also coefficients of the series S(u) for which (-sqrt(3u))*S converges to the larger of the two real roots of x^3 - 3ux + 4u for u >= 4. Specifically, S(u)=Sum_{n>=0} a(n)/(27*u)^(n/2). - Dixon J. Jones, Jun 24 2021

References

  • George E. Andrews, Number Theory, 1971, Dover Publications, New York, pp. 41-43.

Crossrefs

Cf. A000108, A048990, A224884 (signed version).
Cf. A085614.

Programs

  • Mathematica
    p[x_] = y /. Solve[y^3 - y + x == 0, y][[1]]
    b = Table[-4^n*FullSimplify[ExpandAll[SeriesCoefficient[ Series[p[x], {x, 0, 30}], n]]], {n, 0, 30}]
    Table[2^(2n - 1) Gamma[(3n - 1)/2]/(Gamma[(n + 1)/2]n!), {n, 0, 20}] (* Dixon J. Jones, Jun 24 2021 *)
    Table[2^(2n - 1) Pochhammer[(n + 1)/2, (n-1)]/n!, {n, 0, 20}] (* Dixon J. Jones, Jun 24 2021 *)
  • PARI
    -x/serreverse((x*sqrt(1-4*x))) \\ Thomas Baruchel, Jul 02 2018

Formula

G.f.: -(12*x)/(2*sin(arcsin(216*x^2-1)/3)+1). - Vladimir Kruchinin, Oct 30 2014
G.f.: -x/Revert((x*sqrt(1-4*x))). - Thomas Baruchel, Jul 02 2018
G.f.: - (1/x) * Revert( x*sqrt(c(4*x)) ), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108 and sqrt(c(4*x)) is the g.f. of A048990. - Peter Bala, Mar 05 2020
From Dixon J. Jones, Jun 24 2021: (Start)
a(n) = 2*A085614(n) for n>=1.
a(n) = 2^(2*n - 1) Gamma((3*n - 1)/2)/(Gamma((n + 1)/2)*n!).
a(n) = (2^(2*n - 1)*((n + 1)/2)_(n-1))/n!, where (x)_k is the Pochhammer symbol. (End)
a(n) ~ 2^(n-1/2) * 3^(3*n/2-1) / (sqrt(Pi) * n^(3/2)). - Amiram Eldar, Sep 01 2025

Extensions

Edited by N. J. A. Sloane, Feb 09 2012

A235536 a(n) = binomial(8*n, 2*n) / (6*n + 1).

Original entry on oeis.org

1, 4, 140, 7084, 420732, 27343888, 1882933364, 134993766600, 9969937491420, 753310723010608, 57956002331347120, 4524678117939182220, 357557785658996609700, 28545588568201512137904, 2298872717007844035521848, 186533392975795702301759056
Offset: 0

Views

Author

Bruno Berselli, Jan 12 2014

Keywords

Comments

This is the case l=6, k=2 of binomial((l+k)*n,k*n)/((l*n+1)/gcd(k,l*n+1)), see Theorem 1.1 in Zhi-Wei Sun's paper.
First bisection of A002293.
Also, the sequence is between A002296 and A235535.

Crossrefs

Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), A235534 (l=4, k=2), this sequence (l=6, k=2), A187357 (l=3, k=3), A235535 (l=6, k=3).

Programs

  • Magma
    l:=6; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
  • Mathematica
    Table[Binomial[8 n, 2 n]/(6 n + 1), {n, 0, 20}]

Formula

a(n) = A124753(6*n).
From Ilya Gutkovskiy, Jun 21 2018: (Start)
G.f.: 6F5(1/8,1/4,3/8,5/8,3/4,7/8; 1/3,1/2,2/3,5/6,7/6; 65536*x/729).
a(n) ~ 2^(16*n-1)/(sqrt(Pi)*3^(6*n+3/2)*n^(3/2)). (End)

A276483 Decimal expansion of Sum_{k>=0} (2*k+1)/binomial(4*k,2*k).

Original entry on oeis.org

1, 5, 7, 9, 7, 6, 8, 3, 7, 9, 5, 5, 4, 0, 2, 0, 7, 7, 5, 2, 4, 2, 9, 9, 7, 8, 5, 9, 1, 2, 3, 4, 4, 4, 8, 6, 0, 6, 2, 7, 8, 9, 5, 5, 3, 5, 7, 6, 6, 4, 9, 5, 0, 5, 5, 2, 0, 7, 1, 8, 1, 8, 5, 4, 0, 1, 6, 9, 2, 3, 7, 9, 2, 9, 8, 4, 0, 7, 3, 6, 3, 6, 7, 5, 8, 6, 0, 3, 4, 4, 4, 9, 6, 4, 2, 3, 6, 1, 3, 7, 1, 1, 4, 9, 7, 4, 5, 3, 9, 6, 1, 6, 7, 0, 3, 2, 1, 3, 2, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 05 2016

Keywords

Examples

			1.57976837955402077524299785912344486...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 2*Pi(R)/(9*Sqrt(3)) - 4*(3*Sqrt(5)*Log((1+Sqrt(5))/2) - 40)/125; // G. C. Greubel, Nov 04 2018
  • Mathematica
    RealDigits[2 (Pi/(9 Sqrt[3])) - 4 ((3 Sqrt[5] Log[GoldenRatio] - 40)/125), 10, 120][[1]]
    RealDigits[HypergeometricPFQ[{1, 1, 3/2}, {1/4, 3/4}, 1/16], 10, 120][[1]]
  • PARI
    suminf(k=0, 1/(binomial(4*k,2*k)/(2*k+1))) \\ Michel Marcus, Sep 06 2016
    
  • PARI
    default(realprecision, 100); 2*Pi/(9*sqrt(3)) - 4*(3*sqrt(5)*log((1+sqrt(5))/2) - 40)/125 \\ G. C. Greubel, Nov 04 2018
    

Formula

Equals 2*Pi/(9*sqrt(3)) - 4*(3*sqrt(5)*log(phi) - 40)/125, where phi is the golden ratio (A001622).
Equals Sum_{k>=0} 1/Catalan number(2k).
Equals Sum_{k>=0} 1/A000108(2k).
Equals Sum_{k>=0} 1/A048990(k).

A098465 Expansion of (sqrt(1+3*x)-sqrt(1-5*x))/(4*x*sqrt(1-x)).

Original entry on oeis.org

1, 1, 3, 7, 27, 91, 373, 1457, 6163, 25795, 111897, 486421, 2153429, 9584901, 43121211, 195082479, 888861555, 4069956979, 18732710281, 86579713685, 401776434017, 1870946532705, 8740907398527, 40956105551603
Offset: 0

Views

Author

Paul Barry, Sep 09 2004

Keywords

Comments

Binomial transform of A048990 (with interpolated zeros).

Crossrefs

Cf. A000108.

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1+3*x]-Sqrt[1-5*x])/(4*x*Sqrt[1-x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
  • PARI
    x='x+O('x^66); Vec((sqrt(1+3*x)-sqrt(1-5*x))/(4*x*sqrt(1-x))) \\ Joerg Arndt, May 11 2013

Formula

a(n) = sum{k=0..n} binomial(n,k) * C(k) * (1+(-1)^k)/2.
Recurrence: n*(n+1)*a(n) = 2*n*(2*n-1)*a(n-1) + 2*(5*n^2-10*n+3)*a(n-2) - 14*(n-2)*(2*n-3)*a(n-3) + 15*(n-3)*(n-2)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 5^(n+3/2)/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012

A098469 A sequence related to the even-indexed Catalan numbers.

Original entry on oeis.org

1, 2, 6, 20, 78, 332, 1516, 7240, 35734, 180620, 929940, 4858328, 25687052, 137177016, 738819672, 4008435984, 21886788582, 120178329740, 663179894788, 3675923244856, 20456707469540, 114254175491304, 640223315385576
Offset: 0

Views

Author

Paul Barry, Sep 09 2004, corrected Mar 31 2007

Keywords

Comments

Binomial transform of A098465. Second binomial transform of (1,0,2,0,14,0,132,0,1430,...) (set odd-indexed Catalan numbers to zero).

Crossrefs

Cf. A048990.

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1+2*x]-Sqrt[1-6*x])/(4*x*Sqrt[1-2*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
  • PARI
    x='x+O('x^66); Vec((sqrt(1+2*x)-sqrt(1-6*x))/(4*x*sqrt(1-2*x))) \\ Joerg Arndt, May 11 2013

Formula

G.f.: (sqrt(1+2*x) - sqrt(1-6*x))/(4*x*sqrt(1-2*x)).
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(k)*2^(n-2k).
a(n) = Sum_{k=0..n} C(n,k)*2^(n-k)*C(k)*(1-(-1)^k)/2.
Recurrence: n*(n+1)*a(n) = 4*n*(2*n-1)*a(n-1) - 4*(2*n^2 - 4*n + 3)*a(n-2) - 16*(n-2)*(2*n-3)*a(n-3) + 48*(n-3)*(n-2)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 3*6^(n+1/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012

A133602 The matrix-vector product A133080 * A000108.

Original entry on oeis.org

1, 2, 2, 7, 14, 56, 132, 561, 1430, 6292, 16796, 75582, 208012, 950912, 2674440, 12369285, 35357670, 165002460, 477638700, 2244901890, 6564120420, 31030387440, 91482563640, 434542177290, 1289904147324, 6151850548776
Offset: 0

Views

Author

Gary W. Adamson, Sep 18 2007

Keywords

Comments

A133603 is a companion sequence.

Examples

			a(4) = C(4) = 14.
a(5) = 56 = C(5) + C(4) = 42 + 14.
		

Crossrefs

Programs

  • Python
    from sympy import catalan
    def a005807(n): return catalan(n) + catalan(n + 1)
    def a048990(n): return catalan(2*n)
    l=[1, 2]
    for n in range(2, 31): l+=[a048990(n//2) if n%2==0 else a005807(n - 1)]
    print(l) # Indranil Ghosh, Jul 15 2017

Formula

A133080 * A000108, where A133080 = an infinite lower triangular matrix and A000108 = the Catalan sequence as a vector.
a(2n) = A048990(n).
a(2n+1) = A005807(2n).
Conjecture: n*(n-1)*(n-3)*(3*n-4)*a(n) -8*(n-1)*(2*n-5)*a(n-1) -4*(n-2)*(3*n-1)*(2*n-5)*(2*n-7)*a(n-2)=0. - R. J. Mathar, Jun 20 2015
Previous Showing 11-20 of 24 results. Next