A160481
Row sums of the Beta triangle A160480.
Original entry on oeis.org
-1, -10, -264, -13392, -1111680, -137030400, -23500108800, -5351202662400, -1562069156659200, -568747270103040000, -252681700853514240000, -134539938778433126400000, -84573370199475510312960000, -61972704966344777143418880000, -52361960516341326660973363200000
Offset: 2
-
nmax := 14; mmax := nmax: for n from 1 to nmax do BETA(n, n) := 0 end do: m := 1: for n from m+1 to nmax do BETA(n,m) := (2*n-3)^2*BETA(n-1, m)-(2*n-4)! od: for m from 2 to mmax do for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - BETA(n-1, m-1) od: od: for n from 2 to nmax do s1(n) := 0: for m from 1 to n-1 do s1(n) := s1(n) + BETA(n, m) od: od: seq(s1(n), n=2..nmax);
# End first program
nmax := nmax; A120778 := proc(n): numer(sum(binomial(2*k1, k1)/(k1+1) / 4^k1, k1=0..n)) end proc: A000165 := proc(n): 2^n*n! end proc: A049606 := proc(n): denom(2^n/n!) end proc: for n from 2 to nmax do s2(n) := (-1)*A120778(n-2)*A000165(n-2)*A049606(n-1) end do: seq(s2(n), n=2..nmax);
# End second program
-
BETA[2, 1] = -1; BETA[n_, 1] := BETA[n, 1] = (2*n - 3)^2*BETA[n - 1, 1] - (2*n - 4)!; BETA[n_ /; n > 2, m_ /; m > 0] /; 1 <= m <= n := BETA[n, m] = (2*n - 3)^2*BETA[n - 1, m] - BETA[n - 1, m - 1]; BETA[, ] = 0;
Table[Sum[BETA[n, m], {m, 1, n - 1}], {n, 2, 14}] (* Jean-François Alcover, Dec 13 2017 *)
A256400
Numerators of coefficients of expansion of exp( Sum_{k=0..oo} x^(2^k)/2^k ) in powers of x.
Original entry on oeis.org
1, 1, 1, 2, 2, 7, 16, 67, 88, 617, 2626, 18176, 6949, 423271, 2172172, 19151162, 58438907, 899510224, 7656246634, 1236339998, 460251204914, 6682341795214, 55431849118769, 58399157390146, 2845938531282919, 54648005951674444, 12207653488921678
Offset: 0
A212307
Numerator of n!/3^n.
Original entry on oeis.org
1, 1, 2, 2, 8, 40, 80, 560, 4480, 4480, 44800, 492800, 1971200, 25625600, 358758400, 1793792000, 28700672000, 487911424000, 975822848000, 18540634112000, 370812682240000, 2595688775680000, 57105153064960000, 1313418520494080000, 10507348163952640000
Offset: 0
-
Table[Numerator[n!/3^n], {n, 0, 32}]
(* or *) CoefficientList[Series[Exp[3x], {x, 0, 32}], x] // Denominator
-
a(n) = numerator(n!/3^n); \\ Michel Marcus, Oct 30 2013
A306184
a(n) = (2n+1)!! mod (2n)!! where k!! = A006882(k).
Original entry on oeis.org
1, 7, 9, 177, 2715, 42975, 91665, 3493665, 97345395, 2601636975, 70985324025, 57891366225, 9411029102475, 476966861546175, 20499289200014625, 847876038362978625, 35160445175104123875, 1487419121780448231375, 945654757149212735625, 357657177058846280240625
Offset: 1
a(3) = A006882(7) mod A006882(6) = (7*5*3) mod (6*4*2) = 105 mod 48 = 9.
-
f:= n -> doublefactorial(2*n+1) mod doublefactorial(2*n):
map(f, [$1..40]); # Robert Israel, Jan 28 2019
-
Mod[#[[2]],#[[1]]]&/@Partition[Range[2,42]!!,2] (* Harvey P. Dale, May 29 2025 *)
-
o=e=1
for n in range(2, 99, 2):
o*=n+1
e*=n
print(o%e, end=', ')
A336940
Number of odd divisors of n!.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 6, 12, 12, 20, 30, 60, 72, 144, 216, 336, 336, 672, 864, 1728, 2160, 3200, 4800, 9600, 10560, 14784, 22176, 28224, 35280, 70560, 86400, 172800, 172800, 245760, 368640, 497664, 559872, 1119744, 1679616, 2363904, 2626560, 5253120, 6451200, 12902400, 16128000
Offset: 0
The a(1) = 1 through a(8) = 12 divisors:
1 1 1 1 1 1 1 1
3 3 3 3 3 3
5 5 5 5
15 9 7 7
15 9 9
45 15 15
21 21
35 35
45 45
63 63
105 105
315 315
A049606 gives the maximum among these divisors, with quotient
A060818.
A000265 gives the maximum odd divisor of n.
Factorial numbers:
A000142,
A022559,
A027423 (divisors),
A048656,
A071626,
A076716 (factorizations),
A325272,
A325273,
A325617,
A336414,
A336498.
-
Table[Length[Select[Divisors[n!],OddQ]],{n,0,15}]
-
a(n) = sumdiv(n!, d, d%2); \\ Michel Marcus, Aug 24 2020
-
a(n) = numdiv(prod(k=1, n, k >> valuation(k, 2))); \\ Michel Marcus, Aug 27 2020
A337257
Number of even divisors of n!.
Original entry on oeis.org
0, 0, 1, 2, 6, 12, 24, 48, 84, 140, 240, 480, 720, 1440, 2376, 3696, 5040, 10080, 13824, 27648, 38880, 57600, 91200, 182400, 232320, 325248, 510048, 649152, 882000, 1764000, 2246400, 4492800, 5356800, 7618560, 11796480, 15925248
Offset: 0
The a(2) = 1 through a(5) = 12 divisors:
2 2 2 2
6 4 4
6 6
8 8
12 10
24 12
20
24
30
40
60
120
A000265 gives the maximum odd divisor of n.
Factorial numbers:
A000142,
A022559,
A027423 (divisors),
A048656,
A071626,
A076716 (factorizations),
A325272,
A325273,
A325617,
A336414,
A336498.
-
Table[Length[Select[Divisors[n!],EvenQ]],{n,0,15}]
-
a(n) = sumdiv(n!, d, !(d%2)); \\ Michel Marcus, Aug 24 2020
A129195
a(n) = denominator(n!/4^n).
Original entry on oeis.org
1, 4, 8, 32, 32, 128, 256, 1024, 512, 2048, 4096, 16384, 16384, 65536, 131072, 524288, 131072, 524288, 1048576, 4194304, 4194304, 16777216, 33554432, 134217728, 67108864, 268435456, 536870912, 2147483648, 2147483648, 8589934592, 17179869184, 68719476736
Offset: 0
A129915
Irregular triangle read by rows: T(n, k) = f(n, A113474(n-1) - k), where f(n, k) = (n-1)!/2^k if (n-1)!/2^k is an integer, otherwise f(n, k) = 0.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 3, 6, 12, 24, 15, 30, 60, 120, 45, 90, 180, 360, 720, 315, 630, 1260, 2520, 5040, 315, 630, 1260, 2520, 5040, 10080, 20160, 40320, 2835, 5670, 11340, 22680, 45360, 90720, 181440, 362880, 14175, 28350, 56700, 113400, 226800, 453600
Offset: 1
Irregular triangle begins as:
1;
1;
1, 2;
3, 6;
3, 6, 12, 24;
15, 30, 60, 120;
45, 90, 180, 360, 720;
315, 630, 1260, 2520, 5040;
315, 630, 1260, 2520, 5040, 10080, 20160, 40320;
-
A113474:= func< n | n+1 - Multiplicity(Intseq(n, 2), 1) >;
f:= func< n,k | IsIntegral(Factorial(n-1)/2^k) select Factorial(n-1)/2^k else 0 >;
A129915:= func< n,k | f(n, A113474(n-1) - k) >;
[A129915(n,k): k in [1..A113474(n-1)], n in [1..12]]; // G. C. Greubel, Sep 28 2024
-
A113474[n_]:= n+1 - DigitCount[n, 2, 1];
f[n_, k_]:= If[IntegerQ[(n-1)!/2^k], (n-1)!/2^k, 0];
A129915[n_, k_]:= f[n, A113474[n-1]-k];
Table[A129915[n,k], {n,15}, {k,A113474[n-1]}]//Flatten (* modified by G. C. Greubel, Sep 28 2024 *)
-
def A113474(n): return n+1 - sum((n+0).digits(2))
def f(n,k): return factorial(n-1)/2^k if (factorial(n-1)/2^k).is_integer() else 0
def A129915(n,k): return f(n, A113474(n-1) - k)
flatten([[A129915(n,k) for k in range(1, A113474(n-1)+1)] for n in range(1,16)]) # G. C. Greubel, Sep 28 2024
A135354
a(0)=1, a(n) = largest divisor of n! that is coprime to a(n-1).
Original entry on oeis.org
1, 1, 2, 3, 8, 15, 16, 315, 128, 2835, 256, 155925, 1024, 6081075, 2048, 638512875, 32768, 10854718875, 65536, 1856156927625, 262144, 194896477400625, 524288, 49308808782358125, 4194304, 3698160658676859375, 8388608, 1298054391195577640625, 33554432, 263505041412702261046875, 67108864
Offset: 0
-
f:= proc(n,a)
local P,R,i;
P:= select(t -> isprime(t) and igcd(t,a)=1, [2,seq(i,i=3..n,2)]);
R:= map(proc(p) local k; add(floor(n/p^k), k=1 ..ilog[p](n)) end proc, P);
mul(P[i]^R[i],i=1..nops(P));
end proc:
R:= 1: r:= 1: for i from 1 to 50 do r:= f(i,r); R:= R,r od:
R; # Robert Israel, Jul 21 2024
-
a = {1}; For[n = 1, n < 25, n++, AppendTo[a, Select[Divisors[n! ], GCD[a[[ -1]], # ] == 1 &][[ -1]]]]; a (* Stefan Steinerberger, Dec 10 2007 *)
ldnf[{n_,a_}]:={n+1,Max[Select[Divisors[(n+1)!],CoprimeQ[#,a]&]]}; Transpose[ NestList[ldnf,{0,1},30]][[2]] (* Harvey P. Dale, Jan 21 2016 *)
A140105
Trailing zeros removed from n! in binary.
Original entry on oeis.org
1, 1, 1, 11, 11, 1111, 101101, 100111011, 100111011, 101100010011, 11011101011111, 100110000100010101, 1110010001100111111, 10111001100101000110011, 10100010011000011101100101, 100110000011101110111011101011, 100110000011101110111011101011
Offset: 0
a(3)=11 because 3! in binary is 110, which is 11 when the zero is removed.
-
seq(convert(n!/2^padic:-ordp(n!,2),binary), n=0..30); # Robert Israel, May 01 2019
-
a[n_]:=FromDigits[Drop[IntegerDigits[n!,2],-IntegerExponent[n!,2]]];Array[a,17,0] (* James C. McMahon, Jul 04 2025 *)
Comments