cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A160481 Row sums of the Beta triangle A160480.

Original entry on oeis.org

-1, -10, -264, -13392, -1111680, -137030400, -23500108800, -5351202662400, -1562069156659200, -568747270103040000, -252681700853514240000, -134539938778433126400000, -84573370199475510312960000, -61972704966344777143418880000, -52361960516341326660973363200000
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009, Sep 19 2012

Keywords

Comments

It is conjectured that the row sums of the Beta triangle depend on three different sequences. Two Maple algorithms are given. The first one gives the row sums according to the Beta triangle A160480 and the second one gives the row sums according to our conjecture.

Crossrefs

A160480 is the Beta triangle.
Row sum factors A120778, A000165 and A049606.

Programs

  • Maple
    nmax := 14; mmax := nmax: for n from 1 to nmax do BETA(n, n) := 0 end do: m := 1: for n from m+1 to nmax do BETA(n,m) := (2*n-3)^2*BETA(n-1, m)-(2*n-4)! od: for m from 2 to mmax do for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - BETA(n-1, m-1) od: od: for n from 2 to nmax do s1(n) := 0: for m from 1 to n-1 do s1(n) := s1(n) + BETA(n, m) od: od: seq(s1(n), n=2..nmax);
    # End first program
    nmax := nmax; A120778 := proc(n): numer(sum(binomial(2*k1, k1)/(k1+1) / 4^k1, k1=0..n)) end proc: A000165 := proc(n): 2^n*n! end proc: A049606 := proc(n): denom(2^n/n!) end proc: for n from 2 to nmax do s2(n) := (-1)*A120778(n-2)*A000165(n-2)*A049606(n-1) end do: seq(s2(n), n=2..nmax);
    # End second program
  • Mathematica
    BETA[2, 1] = -1; BETA[n_, 1] := BETA[n, 1] = (2*n - 3)^2*BETA[n - 1, 1] - (2*n - 4)!; BETA[n_ /; n > 2, m_ /; m > 0] /; 1 <= m <= n := BETA[n, m] = (2*n - 3)^2*BETA[n - 1, m] - BETA[n - 1, m - 1]; BETA[, ] = 0;
    Table[Sum[BETA[n, m], {m, 1, n - 1}], {n, 2, 14}] (* Jean-François Alcover, Dec 13 2017 *)

Formula

Rowsums(n) = (-1)*A120778(n-2)*A000165(n-2)*A049606(n-1) for n >= 2.
Conjecture: a(n) = (2*n-3)! - 2^(2*n-3)*(n-1)!*(n-2)!, for n >= 2 (gives the first 13 terms). - Christopher P. Herzog, Nov 25 2014
Meijer's and Herzog's conjectures can also be written as: a(n) = -A129890(n-2)*A000165(n-2) = A009445(n-2) - A002474(n-2). - Peter Luschny, Dec 01 2014

Extensions

a(15)-a(16) from Stefano Spezia, Jun 28 2024

A256400 Numerators of coefficients of expansion of exp( Sum_{k=0..oo} x^(2^k)/2^k ) in powers of x.

Original entry on oeis.org

1, 1, 1, 2, 2, 7, 16, 67, 88, 617, 2626, 18176, 6949, 423271, 2172172, 19151162, 58438907, 899510224, 7656246634, 1236339998, 460251204914, 6682341795214, 55431849118769, 58399157390146, 2845938531282919, 54648005951674444, 12207653488921678
Offset: 0

Views

Author

N. J. A. Sloane, Mar 29 2015

Keywords

Crossrefs

For denominators see A049606. Cf. A256401/A256402.

Extensions

a(18)-a(26) from Hiroaki Yamanouchi, Mar 30 2015

A212307 Numerator of n!/3^n.

Original entry on oeis.org

1, 1, 2, 2, 8, 40, 80, 560, 4480, 4480, 44800, 492800, 1971200, 25625600, 358758400, 1793792000, 28700672000, 487911424000, 975822848000, 18540634112000, 370812682240000, 2595688775680000, 57105153064960000, 1313418520494080000, 10507348163952640000
Offset: 0

Views

Author

Keywords

Comments

Also the 3rd column of A152656 (or of A216919).

Crossrefs

Cf. A001316, A049606, A125824 (denominators), A152656, A216919.

Programs

  • Mathematica
    Table[Numerator[n!/3^n], {n, 0, 32}]
    (* or *) CoefficientList[Series[Exp[3x], {x, 0, 32}], x] // Denominator
  • PARI
    a(n) = numerator(n!/3^n); \\ Michel Marcus, Oct 30 2013

Formula

a(n) = Product_{i=1..n} A038502(i). - Tom Edgar, Mar 22 2014
a(n) = A000142(n)/A060828(n). - Ridouane Oudra, Sep 23 2024

A306184 a(n) = (2n+1)!! mod (2n)!! where k!! = A006882(k).

Original entry on oeis.org

1, 7, 9, 177, 2715, 42975, 91665, 3493665, 97345395, 2601636975, 70985324025, 57891366225, 9411029102475, 476966861546175, 20499289200014625, 847876038362978625, 35160445175104123875, 1487419121780448231375, 945654757149212735625, 357657177058846280240625
Offset: 1

Views

Author

Alex Ratushnyak, Jan 27 2019

Keywords

Comments

a(n) is divisible by A049606(n). - Robert Israel, Jan 28 2019

Examples

			a(3) = A006882(7) mod A006882(6) = (7*5*3) mod (6*4*2) = 105 mod 48 = 9.
		

Crossrefs

Programs

  • Maple
    f:= n -> doublefactorial(2*n+1) mod doublefactorial(2*n):
    map(f, [$1..40]); # Robert Israel, Jan 28 2019
  • Mathematica
    Mod[#[[2]],#[[1]]]&/@Partition[Range[2,42]!!,2] (* Harvey P. Dale, May 29 2025 *)
  • Python
    o=e=1
    for n in range(2, 99, 2):
      o*=n+1
      e*=n
      print(o%e, end=', ')

Formula

a(n) = A006882(2*n+1) mod A006882(2*n).

A336940 Number of odd divisors of n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 12, 12, 20, 30, 60, 72, 144, 216, 336, 336, 672, 864, 1728, 2160, 3200, 4800, 9600, 10560, 14784, 22176, 28224, 35280, 70560, 86400, 172800, 172800, 245760, 368640, 497664, 559872, 1119744, 1679616, 2363904, 2626560, 5253120, 6451200, 12902400, 16128000
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2020

Keywords

Examples

			The a(1) = 1 through a(8) = 12 divisors:
  1  1  1  1  1   1   1    1
        3  3  3   3   3    3
              5   5   5    5
              15  9   7    7
                  15  9    9
                  45  15   15
                      21   21
                      35   35
                      45   45
                      63   63
                      105  105
                      315  315
		

Crossrefs

A049606 gives the maximum among these divisors, with quotient A060818.
A337257 is the even version.
A000265 gives the maximum odd divisor of n.
A001227 counts odd divisors.
A183063 counts even divisors.
Factorial numbers: A000142, A022559, A027423 (divisors), A048656, A071626, A076716 (factorizations), A325272, A325273, A325617, A336414, A336498.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],OddQ]],{n,0,15}]
  • PARI
    a(n) = sumdiv(n!, d, d%2); \\ Michel Marcus, Aug 24 2020
    
  • PARI
    a(n) = numdiv(prod(k=1, n, k >> valuation(k, 2))); \\ Michel Marcus, Aug 27 2020

Formula

a(n) = A001227(n!).
a(n) = A000005(A049606(n)).
a(n) + A337257(n) = A027423(n) = A000005(n!).
From Seiichi Manyama, Aug 27 2020: (Start)
If p is odd prime, a(p) = 2 * a(p-1).
a(n) = A027423(n) / A113474(n) for n > 0. (End)

Extensions

a(36)-a(44) from Seiichi Manyama, Aug 26 2020

A337257 Number of even divisors of n!.

Original entry on oeis.org

0, 0, 1, 2, 6, 12, 24, 48, 84, 140, 240, 480, 720, 1440, 2376, 3696, 5040, 10080, 13824, 27648, 38880, 57600, 91200, 182400, 232320, 325248, 510048, 649152, 882000, 1764000, 2246400, 4492800, 5356800, 7618560, 11796480, 15925248
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2020

Keywords

Examples

			The a(2) = 1 through a(5) = 12 divisors:
  2  2  2   2
     6  4   4
        6   6
        8   8
        12  10
        24  12
            20
            24
            30
            40
            60
            120
		

Crossrefs

A336940 is the odd version.
A000265 gives the maximum odd divisor of n.
A001227 counts odd divisors.
A183063 counts even divisors.
Factorial numbers: A000142, A022559, A027423 (divisors), A048656, A071626, A076716 (factorizations), A325272, A325273, A325617, A336414, A336498.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],EvenQ]],{n,0,15}]
  • PARI
    a(n) = sumdiv(n!, d, !(d%2)); \\ Michel Marcus, Aug 24 2020

Formula

a(n) = A183063(n!).
A336940(n) + a(n) = A027423(n) = A000005(n!).

A129195 a(n) = denominator(n!/4^n).

Original entry on oeis.org

1, 4, 8, 32, 32, 128, 256, 1024, 512, 2048, 4096, 16384, 16384, 65536, 131072, 524288, 131072, 524288, 1048576, 4194304, 4194304, 16777216, 33554432, 134217728, 67108864, 268435456, 536870912, 2147483648, 2147483648, 8589934592, 17179869184, 68719476736
Offset: 0

Views

Author

Paul Barry, Apr 02 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Denominator[n!/4^n],{n,0,30}] (* Harvey P. Dale, Mar 05 2013 *)

Formula

a(n) = denominator((1/(2*Pi))*int(exp(i*4*t)(-((Pi-t)/i)^n),t,0,2*Pi)), i=sqrt(-1).
a(n) = 2^A092391(n).

A129915 Irregular triangle read by rows: T(n, k) = f(n, A113474(n-1) - k), where f(n, k) = (n-1)!/2^k if (n-1)!/2^k is an integer, otherwise f(n, k) = 0.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 3, 6, 12, 24, 15, 30, 60, 120, 45, 90, 180, 360, 720, 315, 630, 1260, 2520, 5040, 315, 630, 1260, 2520, 5040, 10080, 20160, 40320, 2835, 5670, 11340, 22680, 45360, 90720, 181440, 362880, 14175, 28350, 56700, 113400, 226800, 453600
Offset: 1

Views

Author

Roger L. Bagula, Jun 05 2007

Keywords

Examples

			Irregular triangle begins as:
    1;
    1;
    1,   2;
    3,   6;
    3,   6,   12,   24;
   15,  30,   60,  120;
   45,  90,  180,  360,  720;
  315, 630, 1260, 2520, 5040;
  315, 630, 1260, 2520, 5040, 10080, 20160, 40320;
		

Crossrefs

Programs

  • Magma
    A113474:= func< n | n+1 - Multiplicity(Intseq(n, 2), 1) >;
    f:= func< n,k | IsIntegral(Factorial(n-1)/2^k) select Factorial(n-1)/2^k else 0 >;
    A129915:= func< n,k | f(n, A113474(n-1) - k) >;
    [A129915(n,k): k in [1..A113474(n-1)], n in [1..12]]; // G. C. Greubel, Sep 28 2024
    
  • Mathematica
    A113474[n_]:= n+1 - DigitCount[n, 2, 1];
    f[n_, k_]:= If[IntegerQ[(n-1)!/2^k], (n-1)!/2^k, 0];
    A129915[n_, k_]:= f[n, A113474[n-1]-k];
    Table[A129915[n,k], {n,15}, {k,A113474[n-1]}]//Flatten (* modified by G. C. Greubel, Sep 28 2024 *)
  • SageMath
    def A113474(n): return n+1 - sum((n+0).digits(2))
    def f(n,k): return factorial(n-1)/2^k if (factorial(n-1)/2^k).is_integer() else 0
    def A129915(n,k): return f(n, A113474(n-1) - k)
    flatten([[A129915(n,k) for k in range(1, A113474(n-1)+1)] for n in range(1,16)]) # G. C. Greubel, Sep 28 2024

Formula

T(n, k) = f(n, A113474(n-1) - k), where f(n, k) = (n-1)!/2^k if (n-1)!/2^k is an integer, otherwise f(n, k) = 0, for n >= 1, 1 <= k <= A113474(n-1).

Extensions

Edited by G. C. Greubel, Sep 28 2024

A135354 a(0)=1, a(n) = largest divisor of n! that is coprime to a(n-1).

Original entry on oeis.org

1, 1, 2, 3, 8, 15, 16, 315, 128, 2835, 256, 155925, 1024, 6081075, 2048, 638512875, 32768, 10854718875, 65536, 1856156927625, 262144, 194896477400625, 524288, 49308808782358125, 4194304, 3698160658676859375, 8388608, 1298054391195577640625, 33554432, 263505041412702261046875, 67108864
Offset: 0

Views

Author

Leroy Quet, Dec 07 2007

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n,a)
      local P,R,i;
      P:= select(t -> isprime(t) and igcd(t,a)=1, [2,seq(i,i=3..n,2)]);
      R:= map(proc(p) local k; add(floor(n/p^k), k=1 ..ilog[p](n)) end proc, P);
      mul(P[i]^R[i],i=1..nops(P));
    end proc:
    R:= 1: r:= 1: for i from 1 to 50 do r:= f(i,r); R:= R,r od:
    R; # Robert Israel, Jul 21 2024
  • Mathematica
    a = {1}; For[n = 1, n < 25, n++, AppendTo[a, Select[Divisors[n! ], GCD[a[[ -1]], # ] == 1 &][[ -1]]]]; a (* Stefan Steinerberger, Dec 10 2007 *)
    ldnf[{n_,a_}]:={n+1,Max[Select[Divisors[(n+1)!],CoprimeQ[#,a]&]]}; Transpose[ NestList[ldnf,{0,1},30]][[2]] (* Harvey P. Dale, Jan 21 2016 *)

Formula

a(2n) = the largest power of 2 that divides (2n)!. a(2n+1) = the largest odd divisor of (2n+1)! = (2n+1)!/a(2n).

Extensions

More terms from Stefan Steinerberger, Dec 10 2007
More terms from Robert Israel, Jul 21 2024

A140105 Trailing zeros removed from n! in binary.

Original entry on oeis.org

1, 1, 1, 11, 11, 1111, 101101, 100111011, 100111011, 101100010011, 11011101011111, 100110000100010101, 1110010001100111111, 10111001100101000110011, 10100010011000011101100101, 100110000011101110111011101011, 100110000011101110111011101011
Offset: 0

Views

Author

Ben Branman, Jun 03 2008

Keywords

Examples

			a(3)=11 because 3! in binary is 110, which is 11 when the zero is removed.
		

Crossrefs

Programs

  • Maple
    seq(convert(n!/2^padic:-ordp(n!,2),binary), n=0..30); # Robert Israel, May 01 2019
  • Mathematica
    a[n_]:=FromDigits[Drop[IntegerDigits[n!,2],-IntegerExponent[n!,2]]];Array[a,17,0] (* James C. McMahon, Jul 04 2025 *)

Formula

a(n) = A007088(A049606(n)). - Robert Israel, May 01 2019

Extensions

a(13)-a(16) from James C. McMahon, Jul 04 2025
Previous Showing 21-30 of 34 results. Next