cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A111216 a(n) = 31*a(n-1)-a(n-2).

Original entry on oeis.org

1, 30, 929, 28769, 890910, 27589441, 854381761, 26458245150, 819351217889, 25373429509409, 785756963573790, 24333092441278081, 753540108716046721, 23335410277756170270, 722644178501725231649, 22378634123275726010849, 693015013643045781104670
Offset: 0

Views

Author

N. J. A. Sloane, following a suggestion from R. K. Guy, Oct 26 2005

Keywords

Comments

Take 31 numbers consisting of 29 ones together with any two successive terms from this sequence. This set has the property that the sum of their squares is 31 times their product. (Guy)
Positive values of x (or y) satisfying x^2 - 31xy + y^2 + 29 = 0. - Colin Barker, Feb 24 2014

Crossrefs

Cf. A049685.
Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,30]; [n le 2 select I[n] else 31*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 26 2014
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 31 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
  • PARI
    Vec((1-x)/(1-31*x+x^2) + O(x^100)) \\ Colin Barker, Feb 24 2014
    

Formula

G.f.: (1-x)/(1-31*x+x^2). [Philippe Deléham, Nov 18 2008]
a(n) = A200442(n) - A200442(n-1). - R. J. Mathar, Feb 13 2016

A227214 Generalized Markoff numbers: largest of 7-tuple of positive numbers a, b, c, d, e, f, g satisfying the Markoff(7) equation a^2+b^2+c^2+d^2+e^2+f^2+g^2 = 7abcdefg.

Original entry on oeis.org

1, 6, 41, 281, 1721, 1926, 13201, 72241, 80646, 90481, 493921, 620166, 2963561, 3032401, 3788441, 4250681, 23145121, 29134601, 127288601, 141753606, 158630641, 177975881, 199691526, 870287321
Offset: 1

Views

Author

Shanzhen Gao, Sep 19 2013

Keywords

Comments

For n = 1, 2, 3, 4, 6, 7, 10, 12, 16, 18, 23, a(n) is in A049685.

Examples

			a(1)=1 and a(2)=6 since (1, 1, 1, 1, 1, 1, 1) and (6, 1, 1, 1, 1, 1, 1) satisfying a^2+b^2+c^2+d^2+e^2+f^2+g^2=7abcdefg.
		

Crossrefs

A123971 Triangle T(n,k), read by rows, defined by T(n,k)=3*T(n-1,k)-T(n-1,k-1)-T(n-2,k), T(0,0)=1, T(1,0)=2, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n.

Original entry on oeis.org

1, 2, -1, 5, -5, 1, 13, -19, 8, -1, 34, -65, 42, -11, 1, 89, -210, 183, -74, 14, -1, 233, -654, 717, -394, 115, -17, 1, 610, -1985, 2622, -1825, 725, -165, 20, -1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1, 4181, -17345, 30691, -30418, 18633, -7329
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 30 2006

Keywords

Comments

This entry is the result of merging two sequences, this one and a later submission by Philippe Deléham, Nov 29 2013 (with edits from Ralf Stephan, Dec 12 2013). Most of the present version is the work of Philippe Deléham, the only things remaining from the original entry are the sequence data and the Mathematica program. - N. J. A. Sloane, May 31 2014
Subtriangle of the triangle given by (0, 2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Apart from signs, equals A126124.
Row sums = 1.
Sum_{k=0..n} T(n,k)*(-x)^k = A001519(n+1), A079935(n+1), A004253(n+1), A001653(n+1), A049685(n), A070997(n), A070998(n), A072256(n+1), A078922(n+1), A077417(n), A085260(n+1), A001570(n+1) for x=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.

Examples

			Triangle begins:
  1
  2, -1
  5, -5, 1
  13, -19, 8, -1
  34, -65, 42, -11, 1
  89, -210, 183, -74, 14, -1
  233, -654, 717, -394, 115, -17, 1
Triangle (0, 2, 1/2, 1/2, 0, 0, ...) DELTA (1, -2, 0, 0, ...) begins:
  1
  0, 1
  0, 2, -1
  0, 5, -5, 1
  0, 13, -19, 8, -1
  0, 34, -65, 42, -11, 1
  0, 89, -210, 183, -74, 14, -1
  0, 233, -654, 717, -394, 115, -17, 1
		

Crossrefs

Programs

  • Mathematica
    Mathematica ( general k th center) Clear[M, T, d, a, x, k] k = 3 T[n_, m_, d_] := If[ n == m && n < d && m < d, k, If[n == m - 1 || n == m + 1, -1, If[n == m == d, k - 1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[ Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a] Table[NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x], {d, 1, 10}] Table[x /. NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x][[d]], {d, 1, 10}]
  • PARI
    T(n,k)=polcoeff(polcoeff(Ser((1-x)/(1+(y-3)*x+x^2)),n,x),n-k,y) \\ Ralf Stephan, Dec 12 2013
    
  • Sage
    @CachedFunction
    def A123971(n,k): # With T(0,0) = 1!
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 2*A123971(n-1,k) if n==1 else 3*A123971(n-1,k)
        return A123971(n-1,k-1) - A123971(n-2,k) - h
    for n in (0..9): [A123971(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

T(n,k) = (-1)^n*A126124(n+1,k+1).
T(n,k) = (-1)^k*Sum_{m=k..n} binomial(m,k)*binomial(m+n,2*m). - Wadim Zudilin, Jan 11 2012
G.f.: (1-x)/(1+(y-3)*x+x^2).
T(n,0) = A001519(n+1) = A000045(2*n+1).
T(n+1,1) = -A001870(n).

Extensions

Edited by N. J. A. Sloane, May 31 2014

A161582 The list of the k values in the common solutions to the 2 equations 5*k+1=A^2, 9*k+1=B^2.

Original entry on oeis.org

0, 7, 336, 15792, 741895, 34853280, 1637362272, 76921173511, 3613657792752, 169764995085840, 7975341111241735, 374671267233275712, 17601574218852716736, 826899317018844410887, 38846666325666834594960, 1824966417989322381552240, 85734574979172485098360327
Offset: 1

Views

Author

Paul Weisenhorn, Jun 14 2009

Keywords

Comments

The 2 equations are equivalent to the Pell equation x^2-45*y^2=1, with x=(45*k+7)/2 and y= A*B/2, case C=5 in A160682.

Crossrefs

Cf. A160682, A049685 (sequence of A), A033890 (sequence of B).

Programs

  • Maple
    t:=0: for n from 0 to 1000000 do a:=sqrt(5*n+1); b:=sqrt(9*n+1);
    if (trunc(a)=a) and (trunc(b)=b) then t:=t+1; print(t,n,a,b): end if: end do:
  • Mathematica
    LinearRecurrence[{48,-48,1},{0,7,336},30] (* or *) Rest[CoefficientList[ Series[ -7x^2/((x-1)(x^2-47x+1)),{x,0,30}],x]] (* Harvey P. Dale, Mar 21 2013 *)

Formula

k(t+3) = 48*(k(t+2)-k(t+1))+k(t).
With w = sqrt(5),
k(t) = ((7+3*w)*((47+21*w)/2)^(t-1)+(7-3*w)*((47-21*w)/2)^(t-1))/90.
k(t) = floor((7+3*w)*((47+21*w)/2)^(t-1)/90) = 7*|A156093(t-1)|.
G.f.: -7*x^2/((x-1)*(x^2-47*x+1)).
a(1)=0, a(2)=7, a(3)=336, a(n) = 48*a(n-1)-48*a(n-2)+a(n-3). - Harvey P. Dale, Mar 21 2013

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009

A172511 a(n) = a(n-1) * (11*a(n-1) - a(n-2)) / (a(n-1) + 4*a(n-2)), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 7, 35, 210, 1365, 9165, 62322, 425867, 2915551, 19974626, 136884937, 938162617, 6430103330, 44072167855, 302074043195, 2070443441970, 14191023001437, 97266699113157, 666675822475026, 4569463931720051
Offset: 0

Views

Author

Michael Somos, Feb 05 2010

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 7*x^3 + 35*x^4 + 210*x^5 + 1365*x^6 + 9165*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-1] (11a[n-1]-a[n-2])/(a[n-1]+ 4a[n-2])},a,{n,30}] (* or *) LinearRecurrence[{11,-33,33,-11,1},{1,1,2,7,35},30] (* Harvey P. Dale, Nov 18 2013 *)
  • PARI
    {a(n) = (4 + fibonacci(4*n - 1)/3 + fibonacci(4*n - 3)/3 + 5 * fibonacci(2*n - 1)) / 10};
    
  • PARI
    {a(n) = my(A); if( n<1, n = 1-n); if( n<3, n, A = vector(n, k, k); for(k=3, n, A[k] = A[k-1] * (11*A[k-1] - A[k-2]) / (A[k-1] + 4*A[k-2])); A[n])}; /* Michael Somos, Sep 22 2014 */

Formula

a(n) = (4 + A049685(n-1) + 5 * A001519(n)) / 10 = a(1 - n).
G.f.: (4 / (1 - x) + (1 - 6*x) / (1 - 7*x + x^2) + (5 - 10*x) / (1 - 3*x + x^2)) / 10.
a(0)=1, a(1)=1, a(2)=2, a(3)=7, a(4)=35, a(n)=11*a(n-1)-33*a(n-2)+ 33*a(n-3)- 11*a(n-4)+a(n-5). - Harvey P. Dale, Nov 18 2013
a(n) = a(1-n) for all n in Z. - Michael Somos, Sep 22 2014
0 = a(n)*(+a(n+1) + 4*a(n+2)) + a(n+1)*(-11*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 22 2014
a(n) = b(n+1) * b(n) * b(n-1) * b(n-2) / 6 for all n in Z where b = A005247. - Michael Somos, Sep 22 2014

A276472 Modified Pascal's triangle read by rows: T(n,k) = T(n-1,k) + T(n-1,k-1), 12. T(n,n) = T(n,n-1) + T(n-1,n-1), n>1. T(1,1) = 1, T(2,1) = 1. n>=1.

Original entry on oeis.org

1, 1, 2, 4, 3, 5, 11, 7, 8, 13, 29, 18, 15, 21, 34, 76, 47, 33, 36, 55, 89, 199, 123, 80, 69, 91, 144, 233, 521, 322, 203, 149, 160, 235, 377, 610, 1364, 843, 525, 352, 309, 395, 612, 987, 1597, 3571, 2207, 1368, 877, 661, 704, 1007, 1599, 2584, 4181
Offset: 1

Views

Author

Yuriy Sibirmovsky, Sep 12 2016

Keywords

Comments

The recurrence relations for the border terms are the only way in which this differs from Pascal's triangle.
Column T(2n,n+1) appears to be divisible by 4 for n>=2; T(2n-1,n) divisible by 3 for n>=2; T(2n,n-2) divisible by 2 for n>=3.
The symmetry of T(n,k) can be observed in a hexagonal arrangement (see the links).
Consider T(n,k) mod 3 = q. Terms with q = 0 show reflection symmetry with respect to the central column T(2n-1,n), while q = 1 and q = 2 are mirror images of each other (see the link).

Examples

			Triangle T(n,k) begins:
n\k 1    2    3    4   5    6    7    8    9
1   1
2   1    2
3   4    3    5
4   11   7    8    13
5   29   18   15   21   34
6   76   47   33   36   55   89
7   199  123  80   69   91   144 233
8   521  322  203  149  160  235 377  610
9   1364 843  525  352  309  395 612  987  1597
...
In another format:
__________________1__________________
_______________1_____2_______________
____________4_____3_____5____________
________11_____7_____8_____13________
____29_____18_____15____21_____34____
_76_____47____33_____36____55_____89_
		

Crossrefs

Programs

  • Mathematica
    Nm=12;
    T=Table[0,{n,1,Nm},{k,1,n}];
    T[[1,1]]=1;
    T[[2,1]]=1;
    T[[2,2]]=2;
    Do[T[[n,1]]=T[[n-1,1]]+T[[n,2]];
    T[[n,n]]=T[[n-1,n-1]]+T[[n,n-1]];
    If[k!=1&&k!=n,T[[n,k]]=T[[n-1,k]]+T[[n-1,k-1]]],{n,3,Nm},{k,1,n}];
    {Row[#,"\t"]}&/@T//Grid
  • PARI
    T(n,k) = if (k==1, if (n==1, 1, if (n==2, 1, T(n-1,1) + T(n,2))), if (kMichel Marcus, Sep 14 2016

Formula

Conjectures:
Relations with other sequences:
T(n+1,1) = A002878(n-1), n>=1.
T(n,n) = A001519(n) = A122367(n-1), n>=1.
T(n+1,2) = A005248(n-1), n>=1.
T(n+1,n) = A001906(n) = A088305(n), n>=1.
T(2n-1,n) = 3*A054441(n-1), n>=2. [the central column].
Sum_{k=1..n} T(n,k) = 3*A105693(n-1), n>=2. [row sums].
Sum_{k=1..n} T(n,k)-T(n,1)-T(n,n) = 3*A258109(n), n>=2.
T(2n,n+1) - T(2n,n) = A026671(n), n>=1.
T(2n,n-1) - T(2n,n) = 2*A026726(n-1), n>=2.
T(n,ceiling(n/2)) - T(n-1,floor(n/2)) = 2*A026732(n-3), n>=3.
T(2n+1,2n) = 3*A004187(n), n>=1.
T(2n+1,2) = 3*A049685(n-1), n>=1.
T(2n+1,2n) + T(2n+1,2) = 3*A033891(n-1), n>=1.
T(2n+1,3) = 5*A206351(n), n>=1.
T(2n+1,2n)/3 - T(2n+1,3)/5 = 4*A092521(n-1), n>=2.
T(2n,1) = 1 + 5*A081018(n-1), n>=1.
T(2n,2) = 2 + 5*A049684(n-1), n>=1.
T(2n+1,2) = 3 + 5*A058038(n-1), n>=1.
T(2n,3) = 3 + 5*A081016(n-2), n>=2.
T(2n+1,1) = 4 + 5*A003482(n-1), n>=1.
T(3n,1) = 4*A049629(n-1), n>=1.
T(3n,1) = 4 + 8*A119032(n), n>=1.
T(3n+1,3) = 8*A133273(n), n>=1.
T(3n+2,3n+2) = 2 + 32*A049664(n), n>=1.
T(3n,3n-2) = 4 + 32*A049664(n-1), n>=1.
T(3n+2,2) = 2 + 16*A049683(n), n>=1.
T(3n+2,2) = 2*A023039(n), n>=1.
T(2n-1,2n-1) = A033889(n-1), n>=1.
T(3n-1,3n-1) = 2*A007805(n-1), n>=1.
T(5n-1,1) = 11*A097842(n-1), n>=1.
T(4n+5,3) - T(4n+1,3) = 15*A000045(8n+1), n>=1.
T(5n+4,3) - T(5n-1,3) = 11*A000204(10n-2), n>=1.
Relations between left and right sides:
T(n,1) = T(n,n) - T(n-2,n-2), n>=3.
T(n,2) = T(n,n-1) - T(n-2,n-3), n>=4.
T(n,1) + T(n,n) = 3*T(n,n-1), n>=2.

A276529 a(n) = (a(n-1) * a(n-5) + 1) / a(n-6), a(0) = a(1) = ... = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 13, 20, 27, 34, 41, 89, 137, 185, 233, 281, 610, 939, 1268, 1597, 1926, 4181, 6436, 8691, 10946, 13201, 28657, 44113, 59569, 75025, 90481, 196418, 302355, 408292, 514229, 620166, 1346269, 2072372, 2798475, 3524578, 4250681, 9227465
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2016

Keywords

Comments

Thanks to the linear recurrence signature, we see that this is actually five separate linear recurrence sequences, each with signature (7,-1), interwoven together. - Greg Dresden, Oct 16 2021

Crossrefs

5th-sections: A049685, A033891, A033889.

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,7,0,0,0,0,-1}, {1,1,1,1,1,1,2,3,4,5}, 50] (* G. C. Greubel, Nov 18 2016 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==1,a[n]==(a[n-1]a[n-5]+ 1)/a[n-6]},a,{n,50}] (* Harvey P. Dale, Oct 08 2020 *)
    Flatten[Table[{LucasL[4 n - 2]/3, Fibonacci[4 n - 1], LucasL[4 n + 2]/3 - Fibonacci[4 n], LucasL[4 n - 2]/3 + Fibonacci[4 n], Fibonacci[4 n + 1]}, {n, 0, 10}]] (* Greg Dresden, Oct 16 2021 *)
  • PARI
    Vec((1 +x +x^2 +x^3 +x^4 -6*x^5 -5*x^6 -4*x^7 -3*x^8 -2*x^9)/(1 -7*x^5 +x^10) + O(x^50)) \\ Colin Barker, Nov 16 2016
  • Ruby
    def A(k, m, n)
      a = Array.new(2 * k, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[-1] * a[1] + a[k] ** m
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276529(n)
      A(3, 0, n)
    end
    

Formula

a(n) + a(n+10) = 7*a(n+5).
a(5-n) = a(n).
G.f.: (1 +x +x^2 +x^3 +x^4 -6*x^5 -5*x^6 -4*x^7 -3*x^8 -2*x^9) / (1 -7*x^5 +x^10). - Colin Barker, Nov 16 2016
From Greg Dresden, Oct 16 2021: (Start)
a(5*n) = L(4*n-2)/3 = A049685(n-1),
a(5*n+1) = F(4*n-1) = A033891(n-1),
a(5*n+2) = L(4*n+2)/3 - F(4*n),
a(5*n+3) = L(4*n-2)/3 + F(4*n),
a(5*n+4) = F(4*n+1) = A033889(n). (End)

A328697 Rectangular array R read by descending antidiagonals: divide the multiples of 3 in the Wythoff array (A035513) by 3, and delete all others.

Original entry on oeis.org

1, 7, 6, 48, 41, 2, 329, 281, 14, 3, 2255, 1926, 96, 5, 4, 15456, 13201, 658, 8, 28, 20, 105937, 90481, 4510, 13, 192, 137, 15, 726103, 620166, 30912, 21, 1316, 939, 103, 27, 4976784, 4250681, 211874, 34, 9020, 6436, 706, 185, 12, 34111385, 29134601, 1452206
Offset: 1

Views

Author

Clark Kimberling, Oct 29 2019

Keywords

Comments

Every positive integer occurs in R exactly once, and every row of R is a linear recurrence sequence.
Row 1 of R is essentially A004187.
Row 2 of R is essentially A049685.
Row 4 of R is essentially A000045.

Examples

			Row 1 of the Wythoff array is (1,2,3,5,8,13,21,34,55,89,144,...), so that row 1 of R is (1,7,48,329,2255,...).
=====================
Northwest corner of R:
   1,   7,  48,  329,  2255,  15456,  105937,   726103
   6,  41, 281, 1926, 13201,  90481,  620166,  4250681
   2,  14,  96,  658,  4510,  30912,  211874,  1452206
   3,   5,   8,   13,    21,     34,      55,       89
   4,  28, 192, 1316,  9020,  61824,  423748,  2904412
  20, 137, 939, 6436, 44113, 302355, 2072372, 14204249
  15, 103, 706, 4839, 33167, 227330, 1558143, 10679671
		

Crossrefs

A342710 Solutions x to the Pell-Fermat equation x^2 - 5*y^2 = 4.

Original entry on oeis.org

3, 18, 123, 843, 5778, 39603, 271443, 1860498, 12752043, 87403803, 599074578, 4106118243, 28143753123, 192900153618, 1322157322203, 9062201101803, 62113250390418, 425730551631123, 2918000611027443, 20000273725560978, 137083915467899403, 939587134549734843
Offset: 0

Views

Author

Bernard Schott, Mar 19 2021

Keywords

Comments

This Pell equation is used to find the 12-gonal square numbers (see A342709).
The corresponding solutions y are in A033890.
Essentially the same as A246453. - R. J. Mathar, Mar 24 2021

Examples

			a(1)^2 - 5 * A033890(1)^2 = 18^2 - 5 * 8^2 = 4.
		

Crossrefs

a(n) = 3*A049685(n). - Hugo Pfoertner, Mar 19 2021

Programs

  • Mathematica
    LinearRecurrence[{7, -1}, {3, 18}, 20] (* Amiram Eldar, Mar 19 2021 *)
    Table[2 ChebyshevT[2 n + 1, 3/2], {n, 0, 20}] (* Eric W. Weisstein, Sep 02 2025 *)
    Table[2 Cos[(2 n + 1) ArcCos[3/2]], {n, 0, 20}] // FunctionExpand (* Eric W. Weisstein, Sep 02 2025 *)

Formula

a(n) = 7*a(n-1) - a(n-2).
a(n) = 2*T(2*n+1, 3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 02 2022
From Stefano Spezia, Apr 14 2025: (Start)
G.f.: 3*(1 - x)/(1 - 7*x + x^2).
E.g.f.: exp(7*x/2)*(3*cosh(3*sqrt(5)*x/2) + sqrt(5)*sinh(3*sqrt(5)*x/2)). (End)
a(n) = 2*cos((2*n+1)*arccos(3/2)). - Eric W. Weisstein, Sep 02 2025

A152119 a(n) = Product_{k=1..(n-1)/2} (5 + 4*cos(k*Pi/n)^2).

Original entry on oeis.org

1, 1, 1, 6, 7, 41, 48, 281, 329, 1926, 2255, 13201, 15456, 90481, 105937, 620166, 726103, 4250681, 4976784, 29134601, 34111385, 199691526, 233802911, 1368706081, 1602508992, 9381251041, 10983760033, 64300051206, 75283811239
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Nov 24 2008

Keywords

Crossrefs

Cf. A004187 (bisection), A049685 (bisection).

Programs

  • Mathematica
    a = Table[Product[5 + 4*Cos[k*Pi/n]^2, {k, 1, (n - 1)/2}], {n, 0, 10}]; FullSimplify[ExpandAll[a]]
    Denominator[NestList[(5/(5+#))&,0,60]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    LinearRecurrence[{0,7,0,-1},{1,1,1,6,7},30] (* Harvey P. Dale, May 17 2025 *)

Formula

a(n) = Product_{k=1..(n-1)/2} (5 + 4*cos(k*Pi/n)^2).
From Joerg Arndt, Jan 24 2013: (Start)
a(n) = 7*a(n-2) - a(n-4).
G.f.: (x^4 - x^3 - 6*x^2 + x + 1)/((x^2 - 3*x + 1)*(x^2 + 3*x + 1)). (End)
Previous Showing 21-30 of 35 results. Next