A111216
a(n) = 31*a(n-1)-a(n-2).
Original entry on oeis.org
1, 30, 929, 28769, 890910, 27589441, 854381761, 26458245150, 819351217889, 25373429509409, 785756963573790, 24333092441278081, 753540108716046721, 23335410277756170270, 722644178501725231649, 22378634123275726010849, 693015013643045781104670
Offset: 0
Cf. similar sequences listed in
A238379.
-
I:=[1,30]; [n le 2 select I[n] else 31*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 26 2014
-
CoefficientList[Series[(1 - x)/(1 - 31 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
-
Vec((1-x)/(1-31*x+x^2) + O(x^100)) \\ Colin Barker, Feb 24 2014
A227214
Generalized Markoff numbers: largest of 7-tuple of positive numbers a, b, c, d, e, f, g satisfying the Markoff(7) equation a^2+b^2+c^2+d^2+e^2+f^2+g^2 = 7abcdefg.
Original entry on oeis.org
1, 6, 41, 281, 1721, 1926, 13201, 72241, 80646, 90481, 493921, 620166, 2963561, 3032401, 3788441, 4250681, 23145121, 29134601, 127288601, 141753606, 158630641, 177975881, 199691526, 870287321
Offset: 1
a(1)=1 and a(2)=6 since (1, 1, 1, 1, 1, 1, 1) and (6, 1, 1, 1, 1, 1, 1) satisfying a^2+b^2+c^2+d^2+e^2+f^2+g^2=7abcdefg.
A123971
Triangle T(n,k), read by rows, defined by T(n,k)=3*T(n-1,k)-T(n-1,k-1)-T(n-2,k), T(0,0)=1, T(1,0)=2, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n.
Original entry on oeis.org
1, 2, -1, 5, -5, 1, 13, -19, 8, -1, 34, -65, 42, -11, 1, 89, -210, 183, -74, 14, -1, 233, -654, 717, -394, 115, -17, 1, 610, -1985, 2622, -1825, 725, -165, 20, -1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1, 4181, -17345, 30691, -30418, 18633, -7329
Offset: 0
Triangle begins:
1
2, -1
5, -5, 1
13, -19, 8, -1
34, -65, 42, -11, 1
89, -210, 183, -74, 14, -1
233, -654, 717, -394, 115, -17, 1
Triangle (0, 2, 1/2, 1/2, 0, 0, ...) DELTA (1, -2, 0, 0, ...) begins:
1
0, 1
0, 2, -1
0, 5, -5, 1
0, 13, -19, 8, -1
0, 34, -65, 42, -11, 1
0, 89, -210, 183, -74, 14, -1
0, 233, -654, 717, -394, 115, -17, 1
Cf.
A094954,
A098495,
A123971,
A126124,
A152063,
A001519,
A079935,
A004253,
A001653,
A049685,
A070997,
A070998,
A072256,
A078922,
A077417,
A085260,
A001570,
A001870,
A126124.
-
Mathematica ( general k th center) Clear[M, T, d, a, x, k] k = 3 T[n_, m_, d_] := If[ n == m && n < d && m < d, k, If[n == m - 1 || n == m + 1, -1, If[n == m == d, k - 1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[ Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a] Table[NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x], {d, 1, 10}] Table[x /. NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x][[d]], {d, 1, 10}]
-
T(n,k)=polcoeff(polcoeff(Ser((1-x)/(1+(y-3)*x+x^2)),n,x),n-k,y) \\ Ralf Stephan, Dec 12 2013
-
@CachedFunction
def A123971(n,k): # With T(0,0) = 1!
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = 2*A123971(n-1,k) if n==1 else 3*A123971(n-1,k)
return A123971(n-1,k-1) - A123971(n-2,k) - h
for n in (0..9): [A123971(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
A161582
The list of the k values in the common solutions to the 2 equations 5*k+1=A^2, 9*k+1=B^2.
Original entry on oeis.org
0, 7, 336, 15792, 741895, 34853280, 1637362272, 76921173511, 3613657792752, 169764995085840, 7975341111241735, 374671267233275712, 17601574218852716736, 826899317018844410887, 38846666325666834594960, 1824966417989322381552240, 85734574979172485098360327
Offset: 1
-
t:=0: for n from 0 to 1000000 do a:=sqrt(5*n+1); b:=sqrt(9*n+1);
if (trunc(a)=a) and (trunc(b)=b) then t:=t+1; print(t,n,a,b): end if: end do:
-
LinearRecurrence[{48,-48,1},{0,7,336},30] (* or *) Rest[CoefficientList[ Series[ -7x^2/((x-1)(x^2-47x+1)),{x,0,30}],x]] (* Harvey P. Dale, Mar 21 2013 *)
A172511
a(n) = a(n-1) * (11*a(n-1) - a(n-2)) / (a(n-1) + 4*a(n-2)), with a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 2, 7, 35, 210, 1365, 9165, 62322, 425867, 2915551, 19974626, 136884937, 938162617, 6430103330, 44072167855, 302074043195, 2070443441970, 14191023001437, 97266699113157, 666675822475026, 4569463931720051
Offset: 0
G.f. = 1 + x + 2*x^2 + 7*x^3 + 35*x^4 + 210*x^5 + 1365*x^6 + 9165*x^7 + ...
-
RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-1] (11a[n-1]-a[n-2])/(a[n-1]+ 4a[n-2])},a,{n,30}] (* or *) LinearRecurrence[{11,-33,33,-11,1},{1,1,2,7,35},30] (* Harvey P. Dale, Nov 18 2013 *)
-
{a(n) = (4 + fibonacci(4*n - 1)/3 + fibonacci(4*n - 3)/3 + 5 * fibonacci(2*n - 1)) / 10};
-
{a(n) = my(A); if( n<1, n = 1-n); if( n<3, n, A = vector(n, k, k); for(k=3, n, A[k] = A[k-1] * (11*A[k-1] - A[k-2]) / (A[k-1] + 4*A[k-2])); A[n])}; /* Michael Somos, Sep 22 2014 */
A276472
Modified Pascal's triangle read by rows: T(n,k) = T(n-1,k) + T(n-1,k-1), 12. T(n,n) = T(n,n-1) + T(n-1,n-1), n>1. T(1,1) = 1, T(2,1) = 1. n>=1.
Original entry on oeis.org
1, 1, 2, 4, 3, 5, 11, 7, 8, 13, 29, 18, 15, 21, 34, 76, 47, 33, 36, 55, 89, 199, 123, 80, 69, 91, 144, 233, 521, 322, 203, 149, 160, 235, 377, 610, 1364, 843, 525, 352, 309, 395, 612, 987, 1597, 3571, 2207, 1368, 877, 661, 704, 1007, 1599, 2584, 4181
Offset: 1
Triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 9
1 1
2 1 2
3 4 3 5
4 11 7 8 13
5 29 18 15 21 34
6 76 47 33 36 55 89
7 199 123 80 69 91 144 233
8 521 322 203 149 160 235 377 610
9 1364 843 525 352 309 395 612 987 1597
...
In another format:
__________________1__________________
_______________1_____2_______________
____________4_____3_____5____________
________11_____7_____8_____13________
____29_____18_____15____21_____34____
_76_____47____33_____36____55_____89_
Cf.
A000045,
A000204,
A001519,
A001906,
A002878,
A005248,
A054441,
A088305,
A122367,
A258109,
A026671,
A026726,
A026732,
A004187,
A049685,
A033891,
A206351,
A092521,
A081018,
A049684,
A058038,
A081016,
A003482,
A049629,
A133273,
A049664,
A049683,
A119032,
A023039,
A007805,
A033889.
-
Nm=12;
T=Table[0,{n,1,Nm},{k,1,n}];
T[[1,1]]=1;
T[[2,1]]=1;
T[[2,2]]=2;
Do[T[[n,1]]=T[[n-1,1]]+T[[n,2]];
T[[n,n]]=T[[n-1,n-1]]+T[[n,n-1]];
If[k!=1&&k!=n,T[[n,k]]=T[[n-1,k]]+T[[n-1,k-1]]],{n,3,Nm},{k,1,n}];
{Row[#,"\t"]}&/@T//Grid
-
T(n,k) = if (k==1, if (n==1, 1, if (n==2, 1, T(n-1,1) + T(n,2))), if (kMichel Marcus, Sep 14 2016
A276529
a(n) = (a(n-1) * a(n-5) + 1) / a(n-6), a(0) = a(1) = ... = a(5) = 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 13, 20, 27, 34, 41, 89, 137, 185, 233, 281, 610, 939, 1268, 1597, 1926, 4181, 6436, 8691, 10946, 13201, 28657, 44113, 59569, 75025, 90481, 196418, 302355, 408292, 514229, 620166, 1346269, 2072372, 2798475, 3524578, 4250681, 9227465
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..5985
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,7,0,0,0,0,-1).
-
LinearRecurrence[{0,0,0,0,7,0,0,0,0,-1}, {1,1,1,1,1,1,2,3,4,5}, 50] (* G. C. Greubel, Nov 18 2016 *)
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==1,a[n]==(a[n-1]a[n-5]+ 1)/a[n-6]},a,{n,50}] (* Harvey P. Dale, Oct 08 2020 *)
Flatten[Table[{LucasL[4 n - 2]/3, Fibonacci[4 n - 1], LucasL[4 n + 2]/3 - Fibonacci[4 n], LucasL[4 n - 2]/3 + Fibonacci[4 n], Fibonacci[4 n + 1]}, {n, 0, 10}]] (* Greg Dresden, Oct 16 2021 *)
-
Vec((1 +x +x^2 +x^3 +x^4 -6*x^5 -5*x^6 -4*x^7 -3*x^8 -2*x^9)/(1 -7*x^5 +x^10) + O(x^50)) \\ Colin Barker, Nov 16 2016
-
def A(k, m, n)
a = Array.new(2 * k, 1)
ary = [1]
while ary.size < n + 1
i = a[-1] * a[1] + a[k] ** m
break if i % a[0] > 0
a = *a[1..-1], i / a[0]
ary << a[0]
end
ary
end
def A276529(n)
A(3, 0, n)
end
A328697
Rectangular array R read by descending antidiagonals: divide the multiples of 3 in the Wythoff array (A035513) by 3, and delete all others.
Original entry on oeis.org
1, 7, 6, 48, 41, 2, 329, 281, 14, 3, 2255, 1926, 96, 5, 4, 15456, 13201, 658, 8, 28, 20, 105937, 90481, 4510, 13, 192, 137, 15, 726103, 620166, 30912, 21, 1316, 939, 103, 27, 4976784, 4250681, 211874, 34, 9020, 6436, 706, 185, 12, 34111385, 29134601, 1452206
Offset: 1
Row 1 of the Wythoff array is (1,2,3,5,8,13,21,34,55,89,144,...), so that row 1 of R is (1,7,48,329,2255,...).
=====================
Northwest corner of R:
1, 7, 48, 329, 2255, 15456, 105937, 726103
6, 41, 281, 1926, 13201, 90481, 620166, 4250681
2, 14, 96, 658, 4510, 30912, 211874, 1452206
3, 5, 8, 13, 21, 34, 55, 89
4, 28, 192, 1316, 9020, 61824, 423748, 2904412
20, 137, 939, 6436, 44113, 302355, 2072372, 14204249
15, 103, 706, 4839, 33167, 227330, 1558143, 10679671
A342710
Solutions x to the Pell-Fermat equation x^2 - 5*y^2 = 4.
Original entry on oeis.org
3, 18, 123, 843, 5778, 39603, 271443, 1860498, 12752043, 87403803, 599074578, 4106118243, 28143753123, 192900153618, 1322157322203, 9062201101803, 62113250390418, 425730551631123, 2918000611027443, 20000273725560978, 137083915467899403, 939587134549734843
Offset: 0
a(1)^2 - 5 * A033890(1)^2 = 18^2 - 5 * 8^2 = 4.
-
LinearRecurrence[{7, -1}, {3, 18}, 20] (* Amiram Eldar, Mar 19 2021 *)
Table[2 ChebyshevT[2 n + 1, 3/2], {n, 0, 20}] (* Eric W. Weisstein, Sep 02 2025 *)
Table[2 Cos[(2 n + 1) ArcCos[3/2]], {n, 0, 20}] // FunctionExpand (* Eric W. Weisstein, Sep 02 2025 *)
A152119
a(n) = Product_{k=1..(n-1)/2} (5 + 4*cos(k*Pi/n)^2).
Original entry on oeis.org
1, 1, 1, 6, 7, 41, 48, 281, 329, 1926, 2255, 13201, 15456, 90481, 105937, 620166, 726103, 4250681, 4976784, 29134601, 34111385, 199691526, 233802911, 1368706081, 1602508992, 9381251041, 10983760033, 64300051206, 75283811239
Offset: 0
-
a = Table[Product[5 + 4*Cos[k*Pi/n]^2, {k, 1, (n - 1)/2}], {n, 0, 10}]; FullSimplify[ExpandAll[a]]
Denominator[NestList[(5/(5+#))&,0,60]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
LinearRecurrence[{0,7,0,-1},{1,1,1,6,7},30] (* Harvey P. Dale, May 17 2025 *)
Comments