cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A006359 Number of distributive lattices; also number of paths with n turns when light is reflected from 6 glass plates.

Original entry on oeis.org

1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, 1897214, 7869927, 32645269, 135416457, 561722840, 2330091144, 9665485440, 40093544735, 166312629795, 689883899612, 2861717685450, 11870733787751, 49241167758705, 204258021937291, 847285745315256
Offset: 0

Views

Author

Keywords

Comments

Let M denotes the 6 X 6 matrix = row by row (1,1,1,1,1,1)(1,1,1,1,1,0)(1,1,1,1,0,0)(1,1,1,0,0,0)(1,1,0,0,0,0)(1,0,0,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1) then a(n) = x(n). - Benoit Cloitre, Apr 02 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A=seq(a.j,j=0..5):grammar1:=[Q5,{ seq(Q.i=Union(Epsilon,seq(Prod(a.j,Q.j),j=5-i..5)),i=0..5), seq(a.j=Z,j=0..5) }, unlabeled]: seq(count(grammar1,size=j),j=0..22); # Zerinvary Lajos, Mar 09 2007
  • Mathematica
    LinearRecurrence[{3,6,-4,-5,1,1},{1,6,21,91,371,1547},30] (* Harvey P. Dale, Sep 03 2016 *)
  • PARI
    k=5; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
    
  • PARI
    {a(n)=local(p=6);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2006

Formula

G.f.: -(z^4 + z^3 - 3z^2 - 2z + 1) / (-1 + 3z + 6z^2 - 4z^3 - 5z^4 + z^5 + z^6). - M. Goebel (manfredg(AT)ICSI.Berkeley.EDU) Jul 26 1997
a(n) = 3*a(n-1) + 6*a(n-2) - 4*a(n-3) - 5*a(n-4) + a(n-5) + a(n-6).
a(n) is asymptotic to z(6)*w(6)^n where w(6) = (1/2)/cos(6*Pi/13) and z(6) is the root 1 < x < 2 of P(6, X) = -1 - 91*X + 2366*X^2 + 26364*X^3 - 142805*X^4 - 371293*X^5 + 371293*X^6 - Benoit Cloitre, Oct 16 2002
G.f.: A(x) = (1 + 3*x - 3*x^2 - 4*x^3 + x^4 + x^5)/(1 - 3*x - 6*x^2 + 4*x^3 + 5*x^4 - x^5 - x^6). - Paul D. Hanna, Feb 06 2006
G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1)))))). - Paul Barry, Mar 24 2010

Extensions

Alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
More terms from James Sellers, Dec 24 1999

A006357 Number of distributive lattices; also number of paths with n turns when light is reflected from 4 glass plates.

Original entry on oeis.org

1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, 48620, 139997, 403104, 1160693, 3342081, 9623140, 27708726, 79784098, 229729153, 661478734, 1904652103, 5484227157, 15791202736, 45468956106, 130922641160, 376976720745, 1085461206128, 3125460977225
Offset: 0

Views

Author

Keywords

Comments

Let M denotes the 4 X 4 matrix = row by row (1,1,1,1)(1,1,1,0)(1,1,0,0)(1,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n))=M^n*A where A is the vector (1,1,1,1) then a(n)=x(n). - Benoit Cloitre, Apr 02 2002
In general, the g.f. for p glass plates is A(x) = F_{p-1}(-x)/F_p(x) where F_p(x) = Sum_{k=0,p} (-1)^[(k+1)/2]*C([(p+k)/2],k)*x^k. - Paul D. Hanna, Feb 06 2006
a(n)/a(n-1) tends to 2.879385..., the longest diagonal of a nonagon with edge 1; or: sin(4*Pi/9)/sin(Pi/9). The sequence is the INVERT transform of (1, 3, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...). - Gary W. Adamson, Jul 16 2015

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,3,-1,-1},{1,4,10,30},30] (* Harvey P. Dale, Nov 18 2013 *)
  • PARI
    a(n)=local(p=4);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n) \\ Paul D. Hanna

Formula

G.f.: (1 + 2*x - x^2 - x^3)/( (1 +x)*(1 -3*x +x^3) ). - Simon Plouffe in his 1992 dissertation
a(n) = 2*a(n-1) + 3*a(n-2) - a(n-3) - a(n-4).
a(n) is asymptotic to z(4)*w(4)^n where w(4) = (1/2)/cos(4*Pi/9) and z(4) is the root 1 < x < 2 of P(4, X) = 1 + 27*X - 324*X^2 + 243*X^3. - Benoit Cloitre, Oct 16 2002
Binomial transform of A122167(unsigned): (1, 3, 3, 11, 10, 40, 33, 146, ...). - Gary W. Adamson, Nov 24 2007
G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1)))). - Paul Barry, Mar 24 2010

Extensions

Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
More terms from James Sellers, Dec 24 1999
More terms from Paul D. Hanna, Feb 06 2006

A074279 n appears n^2 times.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Jon Perry, Sep 21 2002

Keywords

Comments

Since the last occurrence of n comes one before the first occurrence of n+1 and the former is at Sum_{i=0..n} i^2 = A000330(n), we have a(A000330(n)) = a(n*(n+1)*(2n+1)/6) = n and a(1+A000330(n)) = a(1+(n*(n+1)*(2n+1)/6)) = n+1. So the current sequence is, loosely speaking, the inverse function of the square pyramidal sequence A000330. A000330 has many alternative formulas, thus yielding many alternative formulas for the current sequence. - Jonathan Vos Post, Mar 18 2006
Partial sums of A253903. - Jeremy Gardiner, Jan 14 2018

Examples

			This can be viewed also as an irregular table consisting of successively larger square matrices:
  1;
  2, 2;
  2, 2;
  3, 3, 3;
  3, 3, 3;
  3, 3, 3;
  4, 4, 4, 4;
  4, 4, 4, 4;
  4, 4, 4, 4;
  4, 4, 4, 4;
  etc.
When this is used with any similarly organized sequence, a(n) is the index of the matrix in whose range n is. A121997(n) (= A237451(n)+1) and A238013(n) (= A237452(n)+1) would then yield the index of the column and row within that matrix.
		

Crossrefs

Programs

  • Mathematica
    Table[n, {n, 0, 6}, {n^2}] // Flatten (* Arkadiusz Wesolowski, Jan 13 2013 *)
  • PARI
    A074279_vec(N=9)=concat(vector(N,i,vector(i^2,j,i))) \\ Note: This creates a vector; use A074279_vec()[n] to get the n-th term. - M. F. Hasler, Feb 17 2014
    
  • PARI
    a(n) = my(k=sqrtnint(3*n,3)); k + (6*n > k*(k+1)*(2*k+1)); \\ Kevin Ryde, Sep 03 2025
    
  • Python
    from sympy import integer_nthroot
    def A074279(n): return (m:=integer_nthroot(3*n,3)[0])+(6*n>m*(m+1)*((m<<1)+1)) # Chai Wah Wu, Nov 04 2024

Formula

For 1 <= n <= 650, a(n) = floor((3n)^(1/3)+1/2). - Mikael Aaltonen, Jan 05 2015
a(n) = 1 + floor( t(n) + 1 / ( 12 * t(n) ) - 1/2 ), where t(n) = (sqrt(3888*(n-1)^2-1) / (8*3^(3/2)) + 3 * (n-1)/2 ) ^(1/3). - Mikael Aaltonen, Mar 01 2015
a(n) = floor(t + 1/(12*t) + 1/2), where t = (3*n - 1)^(1/3). - Ridouane Oudra, Oct 30 2023
a(n) = m+1 if n > m(m+1)(2m+1)/6 and a(n) = m otherwise where m = floor((3n)^(1/3)). - Chai Wah Wu, Nov 04 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Jun 30 2025

Extensions

Offset corrected from 0 to 1 by Antti Karttunen, Feb 08 2014

A006358 Number of distributive lattices; also number of paths with n turns when light is reflected from 5 glass plates.

Original entry on oeis.org

1, 5, 15, 55, 190, 671, 2353, 8272, 29056, 102091, 358671, 1260143, 4427294, 15554592, 54648506, 191998646, 674555937, 2369942427, 8326406594, 29253473175, 102777312308, 361091343583, 1268635610806, 4457144547354
Offset: 0

Views

Author

Keywords

Comments

Let M denotes the 5 X 5 matrix = row by row (1,1,1,1,1)(1,1,1,1,0)(1,1,1,0,0)(1,1,0,0,0)(1,0,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n),u(n)) = M^n*A where A is the vector (1,1,1,1,1); then a(n)=y(n). - Benoit Cloitre, Apr 02 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.3, Column T1.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A038201 (5-wave sequence).

Programs

  • Maple
    A=seq(a.j,j=0..4):grammar1:=[Q4,{ seq(Q.i=Union(Epsilon,seq(Prod(a.j,Q.j),j=4-i..4)),i=0..4), seq(a.j=Z,j=0..4) }, unlabeled]: seq(count(grammar1,size=j),j=0..23); # Zerinvary Lajos, Mar 09 2007
    A006358:=-(z-1)*(z**3-3*z-1)/(-1+3*z+3*z**2-4*z**3-z**4+z**5); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    m = Table[ If[j <= 6-i, 1, 0], {i, 1, 5}, {j, 1, 5}] ; a[n_] := MatrixPower[m, n].Table[1, {5}]; Table[ a[n], {n, 0, 23}][[All, 1]] (* Jean-François Alcover, Dec 08 2011, after Benoit Cloitre *)
    LinearRecurrence[{3,3,-4,-1,1},{1,5,15,55,190},30] (* Harvey P. Dale, Jun 16 2016 *)
  • PARI
    k=5; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
    
  • PARI
    {a(n)=local(p=5);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)}

Formula

a(n) = 3*a(n-1) + 3*a(n-2) - 4*a(n-3) - a(n-4) + a(n-5).
a(n) is asymptotic to z(5)*w(5)^n where w(5) = (1/2)/cos(5*Pi/11) and z(5) is the root 1 < x < 2 of P(5, X) = -1 + 55*X + 847*X^2 - 5324*X^3 - 14641*X^4 + 14641*X^5. - Benoit Cloitre, Oct 16 2002
G.f.: A(x) = (1 + 2*x - 3*x^2 - x^3 + x^4)/(1 - 3*x - 3*x^2 + 4*x^3 + x^4 - x^5). - Paul D. Hanna, Feb 06 2006

Extensions

Alternative description and formula from Jacques Haubrich (jhaubrich(AT)freeler.nl)
More terms from James Sellers, Dec 24 1999

A006360 Antichains (or order ideals) in the poset 2*2*3*n or size of the distributive lattice J(2*2*3*n).

Original entry on oeis.org

1, 50, 887, 8790, 59542, 307960, 1301610, 4701698, 14975675, 43025762, 113414717, 277904900, 639562508, 1393844960, 2896063220, 5768600412, 11066514565, 20526933442, 36936277875, 64660182026, 110394412610
Offset: 0

Views

Author

Keywords

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Empirical G.f.: (x+1)*(x^6+36*x^5+279*x^4+594*x^3+279*x^2+36*x+1)/(1-x)^13. - Colin Barker, May 29 2012

Extensions

More terms from Mitch Harris, Jul 16 2000

A276312 Number of up-down sequences of length n and values in {1,2,...,n}.

Original entry on oeis.org

1, 1, 1, 5, 31, 246, 2353, 26585, 345775, 5094220, 83833256, 1524414737, 30353430420, 656851828075, 15350023574061, 385261255931365, 10335781852020335, 295166535640444376, 8939894824857438940, 286234265613041061128, 9659753724363828753408
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2016

Keywords

Examples

			a(0) = 1: the empty sequence.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 5: 121, 131, 132, 231, 232.
a(4) = 31: 1212, 1213, 1214, 1312, 1313, 1314, 1323, 1324, 1412, 1413, 1414, 1423, 1424, 1434, 2312, 2313, 2314, 2323, 2324, 2412, 2413, 2414, 2423, 2424, 2434, 3412, 3413, 3414, 3423, 3424, 3434.
		

Crossrefs

A diagonal of A050446, A050447.
Cf. A276313.

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(n=0, 1,
          add(b(n-1, k, k-j), j=1..t-1))
        end:
    a:= n-> b(n, n+1$2):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[n==0, 1, Sum[b[n-1, k, k-j], {j, 1, t-1}]];
    a[n_] := b[n, n+1, n+1];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

a(n) ~ exp(-1/2) * 2^(n+2) * n^n / Pi^(n+1). - Vaclav Kotesovec, Aug 30 2016

A276313 Number of weak up-down sequences of length n and values in {1,2,...,n}.

Original entry on oeis.org

1, 1, 3, 14, 85, 671, 6405, 72302, 940005, 13846117, 227837533, 4142793511, 82488063476, 1785049505682, 41715243815059, 1046997553798894, 28089178205661221, 802173732190546289, 24296253228394108980, 777918130180655893150, 26253270588637259772768
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2016

Keywords

Examples

			a(0) = 1: the empty sequence.
a(1) = 1: 1.
a(2) = 3: 11, 12, 22.
a(3) = 14: 111, 121, 122, 131, 132, 133, 221, 222, 231, 232, 233, 331, 332, 333.
a(4) = 85: 1111, 1112, 1113, 1114, 1211, ..., 4423, 4424, 4433, 4434, 4444.
		

Crossrefs

A diagonal of A050446, A050447.
Cf. A276312.

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(n=0, 1,
          add(b(n-1, k, k-j), j=1..t))
        end:
    a:= n-> b(n, n+1, n):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[n==0, 1, Sum[b[n-1, k, k-j], {j, 1, t}]];
    a[n_] := b[n, n+1, n];
    Table[a[n], {n, 0, 25}](* Jean-François Alcover, May 18 2017, translated from Maple *)

Formula

a(n) ~ exp(1/2) * 2^(n+2) * n^n / Pi^(n+1). - Vaclav Kotesovec, Aug 30 2016

A108582 n appears n^3 times.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Jonathan Vos Post, Jul 25 2005

Keywords

Comments

From Jonathan Vos Post, Mar 18 2006: (Start)
The key to this sequence is: 1^3 + 2^3 + 3^3 + ... + n^3 = (1+2+3+...+n)^2.
Since the last occurrence of n comes one before the first occurrence of n+1 and the former is at Sum_{i=0..n} i^3 = A000537(n) = (A000217(n))^2 = (n*(n+1)/2)^2 = (C(n+1,2))^2, have a(A000537(n)) = a((A000217(n))^2) = n and thus a(1+A000537(n)) = a(1+(A000217(n))^2) = n+1.
The current sequence is, loosely, the inverse function of the square of the triangular number sequence. (End)

Crossrefs

Programs

  • Mathematica
    Flatten @ Table[ Table[k, {k^3}], {k, 5}] (* Giovanni Resta, Jun 17 2016 *)
    a[n_]:=Ceiling[1/2 (Sqrt[8 Sqrt[n]+1]-1)]
    Nmax=225; Table[a[n],{n,1,Nmax}] (* Boris Putievskiy, Jun 19 2024 *)
  • Python
    from sympy import integer_nthroot
    def A108582(n): return (m:=integer_nthroot(k:=n<<2,4)[0])+(k>(m*(m+1))**2) # Chai Wah Wu, Nov 04 2024

Formula

a(n) = ceiling((1/2)*(sqrt(8*sqrt(n) + 1) - 1)). - Boris Putievskiy, Jun 19 2024
From Chai Wah Wu, Nov 04 2024: (Start)
a(n) = m+1 if n>(m(m+1))^2/4 and a(n) = m otherwise where m = floor((4n)^(1/4)).
More generally, for a sequence a_k(n) where n appears n^(k-1) times, a_k(n) = m+1 if n > Sum_{i=1..m} i^(k-1) and a_k(n) = m otherwise where m = floor((kn)^(1/k)).
Note that Sum_{i=1..m} i^(k-1) can be written as a k-th order polynomial of m using Faulhaber's formula. (End)

Extensions

Two missing terms from Giovanni Resta, Jun 17 2016

A205492 Expansion of (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+x^3)).

Original entry on oeis.org

1, 7, 31, 109, 334, 937, 2475, 6267, 15393, 36976, 87369, 203915, 471546, 1082849, 2473535, 5627684, 12765052, 28887838, 65260270, 147233926, 331842395, 747355066, 1682185342, 3784718431, 8512408455, 19141037360, 43032743620
Offset: 0

Views

Author

L. Edson Jeffery, Jan 28 2012

Keywords

Comments

See array A205497 regarding association of this sequence with generating functions for the rows of the array form of A050446.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)) )); // G. C. Greubel, Jan 04 2020
    
  • Maple
    seq(coeff(series((1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 04 2020
  • Mathematica
    LinearRecurrence[{7,-17,12,15,-26,3,13,-5,-2,1},{1,7,31,109,334,937,2475,6267, 15393,36976},30] (* Harvey P. Dale, Mar 26 2013 *)
    CoefficientList[Series[(1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)), {x,0,30}], x] (* G. C. Greubel, Jan 04 2020 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3))) \\ G. C. Greubel, Jan 04 2020
    
  • Sage
    def A205492_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+x^3)) ).list()
    A205492_list(30) # G. C. Greubel, Jan 04 2020

Formula

a(n) = 7*a(n-1) - 17*a(n-2) + 12*a(n-3) + 15*a(n-4) - 26*a(n-5) + 3*a(n-6) + 13*a(n-7) - 5*a(n-8) - 2*a(n-9) + a(n-10), n>9, {a(m)} = {1, 7, 31, 109, 334, 937, 2475, 6267, 15393, 36976}, m=0,...,9.
CONJECTURE 1. a(n) = M_{n,2} = M_{2,n}, where M = A205497.
CONJECTURE 2. lim_{n->oo} a(n+1)/a(n) = (2*cos(Pi/7))^2-1 = A116425-1 = spectral radius of the 3 X 3 unit-primitive matrix (see [Jeffery]) A_{7,2} = [0,0,1; 0,1,1; 1,1,1].

A373424 Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(n) is the continued fraction (-1)^n/(~x - 1/(~x - ... 1/(~x - 1)))...) and where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 5, 1, 0, 1, 5, 10, 14, 8, 1, 0, 1, 6, 15, 30, 31, 13, 1, 0, 1, 7, 21, 55, 85, 70, 21, 1, 0, 1, 8, 28, 91, 190, 246, 157, 34, 1, 0, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 0, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 0
Offset: 0

Views

Author

Peter Luschny, Jun 09 2024

Keywords

Comments

A variant of both A050446 and A050447 which are the main entries. Differs in indexing and adds a first row to the array resp. a diagonal to the triangle.

Examples

			Generating functions of the rows:
   gf0 =  1;
   gf1 = -1/( x-1);
   gf2 =  1/(-x-1/(-x-1));
   gf3 = -1/( x-1/( x-1/( x-1)));
   gf4 =  1/(-x-1/(-x-1/(-x-1/(-x-1))));
   gf5 = -1/( x-1/( x-1/( x-1/( x-1/( x-1)))));
   gf6 =  1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1))))));
   ...
Array A(n, k) starts:
  [0] 1, 0,  0,  0,   0,    0,    0,     0,      0,      0, ...  A000007
  [1] 1, 1,  1,  1,   1,    1,    1,     1,      1,      1, ...  A000012
  [2] 1, 2,  3,  5,   8,   13,   21,    34,     55,     89, ...  A000045
  [3] 1, 3,  6, 14,  31,   70,  157,   353,    793,   1782, ...  A006356
  [4] 1, 4, 10, 30,  85,  246,  707,  2037,   5864,  16886, ...  A006357
  [5] 1, 5, 15, 55, 190,  671, 2353,  8272,  29056, 102091, ...  A006358
  [6] 1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, ...  A006359
   A000027,A000330,   A085461,     A244881, ...
       A000217, A006322,    A108675, ...
.
Triangle T(n, k) = A(n - k, k) starts:
  [0] 1;
  [1] 1,  0;
  [2] 1,  1,  0;
  [3] 1,  2,  1,  0;
  [4] 1,  3,  3,  1,  0;
  [5] 1,  4,  6,  5,  1,  0;
  [6] 1,  5, 10, 14,  8,  1, 0;
		

Crossrefs

Cf. A050446, A050447, A276313 (main diagonal), A373353 (row sums of triangle).
Cf. A373423.

Programs

  • Maple
    row := proc(n, len) local x, a, j, ser; if irem(n, 2) = 1 then
    a :=  x - 1; for j from 1 to n do a :=  x - 1 / a od: a :=  a - x; else
    a := -x - 1; for j from 1 to n do a := -x - 1 / a od: a := -a - x;
    fi; ser := series(a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end:
    A := (n, k) -> row(n, 12)[k+1]:      # array form
    T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form
  • SageMath
    def Arow(n, len):
        R. = PowerSeriesRing(ZZ, len)
        if n == 0: return [1] + [0]*(len - 1)
        x = -x if n % 2 else x
        a = x + 1
        for _ in range(n):
            a = x - 1 / a
        a = x - a if n % 2 else a - x
        return a.list()
    for n in range(7): print(Arow(n, 10))
Previous Showing 11-20 of 23 results. Next