A006359
Number of distributive lattices; also number of paths with n turns when light is reflected from 6 glass plates.
Original entry on oeis.org
1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, 1897214, 7869927, 32645269, 135416457, 561722840, 2330091144, 9665485440, 40093544735, 166312629795, 689883899612, 2861717685450, 11870733787751, 49241167758705, 204258021937291, 847285745315256
Offset: 0
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Emma L. L. Gao, Sergey Kitaev, and Philip B. Zhang, Pattern-avoiding alternating words, arXiv:1505.04078 [math.CO], 2015.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (3,6,-4,-5,1,1).
-
A=seq(a.j,j=0..5):grammar1:=[Q5,{ seq(Q.i=Union(Epsilon,seq(Prod(a.j,Q.j),j=5-i..5)),i=0..5), seq(a.j=Z,j=0..5) }, unlabeled]: seq(count(grammar1,size=j),j=0..22); # Zerinvary Lajos, Mar 09 2007
-
LinearRecurrence[{3,6,-4,-5,1,1},{1,6,21,91,371,1547},30] (* Harvey P. Dale, Sep 03 2016 *)
-
k=5; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
-
{a(n)=local(p=6);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2006
Alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
A006357
Number of distributive lattices; also number of paths with n turns when light is reflected from 4 glass plates.
Original entry on oeis.org
1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, 48620, 139997, 403104, 1160693, 3342081, 9623140, 27708726, 79784098, 229729153, 661478734, 1904652103, 5484227157, 15791202736, 45468956106, 130922641160, 376976720745, 1085461206128, 3125460977225
Offset: 0
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Emma L. L. Gao, Sergey Kitaev, and Philip B. Zhang, Pattern-avoiding alternating words, arXiv:1505.04078 [math.CO], 2015.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (2,3,-1,-1).
-
LinearRecurrence[{2,3,-1,-1},{1,4,10,30},30] (* Harvey P. Dale, Nov 18 2013 *)
-
a(n)=local(p=4);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n) \\ Paul D. Hanna
Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
A074279
n appears n^2 times.
Original entry on oeis.org
1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1
This can be viewed also as an irregular table consisting of successively larger square matrices:
1;
2, 2;
2, 2;
3, 3, 3;
3, 3, 3;
3, 3, 3;
4, 4, 4, 4;
4, 4, 4, 4;
4, 4, 4, 4;
4, 4, 4, 4;
etc.
When this is used with any similarly organized sequence, a(n) is the index of the matrix in whose range n is. A121997(n) (= A237451(n)+1) and A238013(n) (= A237452(n)+1) would then yield the index of the column and row within that matrix.
Cf.
A000217,
A000330,
A002024,
A003881,
A006331,
A050446,
A050447,
A000537,
A006003,
A005900,
A064866,
A237451,
A237452.
-
Table[n, {n, 0, 6}, {n^2}] // Flatten (* Arkadiusz Wesolowski, Jan 13 2013 *)
-
A074279_vec(N=9)=concat(vector(N,i,vector(i^2,j,i))) \\ Note: This creates a vector; use A074279_vec()[n] to get the n-th term. - M. F. Hasler, Feb 17 2014
-
a(n) = my(k=sqrtnint(3*n,3)); k + (6*n > k*(k+1)*(2*k+1)); \\ Kevin Ryde, Sep 03 2025
-
from sympy import integer_nthroot
def A074279(n): return (m:=integer_nthroot(3*n,3)[0])+(6*n>m*(m+1)*((m<<1)+1)) # Chai Wah Wu, Nov 04 2024
A006358
Number of distributive lattices; also number of paths with n turns when light is reflected from 5 glass plates.
Original entry on oeis.org
1, 5, 15, 55, 190, 671, 2353, 8272, 29056, 102091, 358671, 1260143, 4427294, 15554592, 54648506, 191998646, 674555937, 2369942427, 8326406594, 29253473175, 102777312308, 361091343583, 1268635610806, 4457144547354
Offset: 0
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.3, Column T1.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Emma L. L. Gao, Sergey Kitaev, and Philip B. Zhang, Pattern-avoiding alternating words, arXiv:1505.04078 [math.CO], 2015.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (3,3,-4,-1,1).
-
A=seq(a.j,j=0..4):grammar1:=[Q4,{ seq(Q.i=Union(Epsilon,seq(Prod(a.j,Q.j),j=4-i..4)),i=0..4), seq(a.j=Z,j=0..4) }, unlabeled]: seq(count(grammar1,size=j),j=0..23); # Zerinvary Lajos, Mar 09 2007
A006358:=-(z-1)*(z**3-3*z-1)/(-1+3*z+3*z**2-4*z**3-z**4+z**5); # conjectured by Simon Plouffe in his 1992 dissertation
-
m = Table[ If[j <= 6-i, 1, 0], {i, 1, 5}, {j, 1, 5}] ; a[n_] := MatrixPower[m, n].Table[1, {5}]; Table[ a[n], {n, 0, 23}][[All, 1]] (* Jean-François Alcover, Dec 08 2011, after Benoit Cloitre *)
LinearRecurrence[{3,3,-4,-1,1},{1,5,15,55,190},30] (* Harvey P. Dale, Jun 16 2016 *)
-
k=5; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
-
{a(n)=local(p=5);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)}
Alternative description and formula from Jacques Haubrich (jhaubrich(AT)freeler.nl)
A006360
Antichains (or order ideals) in the poset 2*2*3*n or size of the distributive lattice J(2*2*3*n).
Original entry on oeis.org
1, 50, 887, 8790, 59542, 307960, 1301610, 4701698, 14975675, 43025762, 113414717, 277904900, 639562508, 1393844960, 2896063220, 5768600412, 11066514565, 20526933442, 36936277875, 64660182026, 110394412610
Offset: 0
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 9.
- Index entries for sequences related to posets.
Cf.
A000217,
A000330,
A050446,
A050447,
A006356,
A006357,
A006358,
A006359,
A000372,
A056932,
A006361,
A006362,
A056933,
A056934,
A056935,
A056936,
A056937.
A276312
Number of up-down sequences of length n and values in {1,2,...,n}.
Original entry on oeis.org
1, 1, 1, 5, 31, 246, 2353, 26585, 345775, 5094220, 83833256, 1524414737, 30353430420, 656851828075, 15350023574061, 385261255931365, 10335781852020335, 295166535640444376, 8939894824857438940, 286234265613041061128, 9659753724363828753408
Offset: 0
a(0) = 1: the empty sequence.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 5: 121, 131, 132, 231, 232.
a(4) = 31: 1212, 1213, 1214, 1312, 1313, 1314, 1323, 1324, 1412, 1413, 1414, 1423, 1424, 1434, 2312, 2313, 2314, 2323, 2324, 2412, 2413, 2414, 2423, 2424, 2434, 3412, 3413, 3414, 3423, 3424, 3434.
-
b:= proc(n, k, t) option remember; `if`(n=0, 1,
add(b(n-1, k, k-j), j=1..t-1))
end:
a:= n-> b(n, n+1$2):
seq(a(n), n=0..25);
-
b[n_, k_, t_] := b[n, k, t] = If[n==0, 1, Sum[b[n-1, k, k-j], {j, 1, t-1}]];
a[n_] := b[n, n+1, n+1];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
A276313
Number of weak up-down sequences of length n and values in {1,2,...,n}.
Original entry on oeis.org
1, 1, 3, 14, 85, 671, 6405, 72302, 940005, 13846117, 227837533, 4142793511, 82488063476, 1785049505682, 41715243815059, 1046997553798894, 28089178205661221, 802173732190546289, 24296253228394108980, 777918130180655893150, 26253270588637259772768
Offset: 0
a(0) = 1: the empty sequence.
a(1) = 1: 1.
a(2) = 3: 11, 12, 22.
a(3) = 14: 111, 121, 122, 131, 132, 133, 221, 222, 231, 232, 233, 331, 332, 333.
a(4) = 85: 1111, 1112, 1113, 1114, 1211, ..., 4423, 4424, 4433, 4434, 4444.
-
b:= proc(n, k, t) option remember; `if`(n=0, 1,
add(b(n-1, k, k-j), j=1..t))
end:
a:= n-> b(n, n+1, n):
seq(a(n), n=0..25);
-
b[n_, k_, t_] := b[n, k, t] = If[n==0, 1, Sum[b[n-1, k, k-j], {j, 1, t}]];
a[n_] := b[n, n+1, n];
Table[a[n], {n, 0, 25}](* Jean-François Alcover, May 18 2017, translated from Maple *)
A108582
n appears n^3 times.
Original entry on oeis.org
1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5
Offset: 1
-
Flatten @ Table[ Table[k, {k^3}], {k, 5}] (* Giovanni Resta, Jun 17 2016 *)
a[n_]:=Ceiling[1/2 (Sqrt[8 Sqrt[n]+1]-1)]
Nmax=225; Table[a[n],{n,1,Nmax}] (* Boris Putievskiy, Jun 19 2024 *)
-
from sympy import integer_nthroot
def A108582(n): return (m:=integer_nthroot(k:=n<<2,4)[0])+(k>(m*(m+1))**2) # Chai Wah Wu, Nov 04 2024
A205492
Expansion of (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+x^3)).
Original entry on oeis.org
1, 7, 31, 109, 334, 937, 2475, 6267, 15393, 36976, 87369, 203915, 471546, 1082849, 2473535, 5627684, 12765052, 28887838, 65260270, 147233926, 331842395, 747355066, 1682185342, 3784718431, 8512408455, 19141037360, 43032743620
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- L. E. Jeffery, Unit-primitive matrices
- Index entries for linear recurrences with constant coefficients, signature (7,-17,12,15,-26,3,13,-5,-2,1).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)) )); // G. C. Greubel, Jan 04 2020
-
seq(coeff(series((1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 04 2020
-
LinearRecurrence[{7,-17,12,15,-26,3,13,-5,-2,1},{1,7,31,109,334,937,2475,6267, 15393,36976},30] (* Harvey P. Dale, Mar 26 2013 *)
CoefficientList[Series[(1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)), {x,0,30}], x] (* G. C. Greubel, Jan 04 2020 *)
-
my(x='x+O('x^30)); Vec((1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3))) \\ G. C. Greubel, Jan 04 2020
-
def A205492_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+x^3)) ).list()
A205492_list(30) # G. C. Greubel, Jan 04 2020
A373424
Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(n) is the continued fraction (-1)^n/(~x - 1/(~x - ... 1/(~x - 1)))...) and where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 5, 1, 0, 1, 5, 10, 14, 8, 1, 0, 1, 6, 15, 30, 31, 13, 1, 0, 1, 7, 21, 55, 85, 70, 21, 1, 0, 1, 8, 28, 91, 190, 246, 157, 34, 1, 0, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 0, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 0
Offset: 0
Generating functions of the rows:
gf0 = 1;
gf1 = -1/( x-1);
gf2 = 1/(-x-1/(-x-1));
gf3 = -1/( x-1/( x-1/( x-1)));
gf4 = 1/(-x-1/(-x-1/(-x-1/(-x-1))));
gf5 = -1/( x-1/( x-1/( x-1/( x-1/( x-1)))));
gf6 = 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1))))));
...
Array A(n, k) starts:
[0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[2] 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... A000045
[3] 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, ... A006356
[4] 1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, ... A006357
[5] 1, 5, 15, 55, 190, 671, 2353, 8272, 29056, 102091, ... A006358
[6] 1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, ... A006359
A000027,A000330, A085461, A244881, ...
A000217, A006322, A108675, ...
.
Triangle T(n, k) = A(n - k, k) starts:
[0] 1;
[1] 1, 0;
[2] 1, 1, 0;
[3] 1, 2, 1, 0;
[4] 1, 3, 3, 1, 0;
[5] 1, 4, 6, 5, 1, 0;
[6] 1, 5, 10, 14, 8, 1, 0;
-
row := proc(n, len) local x, a, j, ser; if irem(n, 2) = 1 then
a := x - 1; for j from 1 to n do a := x - 1 / a od: a := a - x; else
a := -x - 1; for j from 1 to n do a := -x - 1 / a od: a := -a - x;
fi; ser := series(a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end:
A := (n, k) -> row(n, 12)[k+1]: # array form
T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form
-
def Arow(n, len):
R. = PowerSeriesRing(ZZ, len)
if n == 0: return [1] + [0]*(len - 1)
x = -x if n % 2 else x
a = x + 1
for _ in range(n):
a = x - 1 / a
a = x - a if n % 2 else a - x
return a.list()
for n in range(7): print(Arow(n, 10))
Comments