cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 73 results. Next

A258602 a(n) is the index m such that A069492(m) = prime(n)^5.

Original entry on oeis.org

2, 5, 12, 20, 37, 45, 68, 82, 106, 142, 154, 196, 219, 234, 260, 305, 342, 360, 407, 434, 451, 496, 528, 573, 635, 668, 681, 720, 737, 770, 885, 919, 966, 984, 1065, 1087, 1139, 1193, 1228, 1283, 1331, 1348, 1440, 1455, 1484, 1509, 1624, 1731, 1767, 1789
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A069492(a(n)) = A050997(n) = prime(n)^5;
A069492(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258570(m) = prime(n):
A258570(a(n)) = A000040(n) and A258570(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A069492(a(n)) = A050997(n) = p^5
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            32
.   2 |  3 |     5 |           243
.   3 |  5 |    12 |          3125
.   4 |  7 |    20 |         16807
.   5 | 11 |    37 |        161051
.   6 | 13 |    45 |        371293
.   7 | 17 |    68 |       1419857
.   8 | 19 |    82 |       2476099
.   9 | 23 |   106 |       6436343
.  10 | 29 |   142 |      20511149
.  11 | 31 |   154 |      28629151
.  12 | 37 |   196 |      69343957
.  13 | 41 |   219 |     115856201
.  14 | 43 |   234 |     147008443
.  15 | 47 |   260 |     229345007
.  16 | 53 |   305 |     418195493
.  17 | 59 |   342 |     714924299
.  18 | 61 |   360 |     844596301
.  19 | 67 |   407 |    1350125107
.  20 | 71 |   434 |    1804229351
.  21 | 73 |   451 |    2073071593
.  22 | 79 |   496 |    3077056399
.  23 | 83 |   528 |    3939040643
.  24 | 89 |   573 |    5584059449
.  25 | 97 |   635 |    8587340257  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258602 = (+ 1) . fromJust . (`elemIndex` a258570_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^5,5) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258602(n):
        c, m = 0, prime(n)**5
        for t in range(1,integer_nthroot(m,9)[0]+1):
            if all(d<=1 for d in factorint(t).values()):
                for u in range(1,integer_nthroot(s:=m//t**9,8)[0]+1):
                    if gcd(t,u)==1 and all(d<=1 for d in factorint(u).values()):
                        for w in range(1,integer_nthroot(a:=s//u**8,7)[0]+1):
                            if gcd(u,w)==1 and gcd(t,w)==1 and all(d<=1 for d in factorint(w).values()):
                                for y in range(1,integer_nthroot(z:=a//w**7,6)[0]+1):
                                    if gcd(w,y)==1 and gcd(u,y)==1 and gcd(t,y)==1 and all(d<=1 for d in factorint(y).values()):
                                        c += integer_nthroot(z//y**6,5)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024

A319075 Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2018

Keywords

Comments

If n = p - 1 where p is prime, then row n lists the numbers with p divisors.
The partial sums of column k give the column k of A319076.

Examples

			The corner of the square array is as follows:
         A000079 A000244 A000351  A000420    A001020    A001022     A001026
A000012        1,      1,      1,       1,         1,         1,          1, ...
A000040        2,      3,      5,       7,        11,        13,         17, ...
A001248        4,      9,     25,      49,       121,       169,        289, ...
A030078        8,     27,    125,     343,      1331,      2197,       4913, ...
A030514       16,     81,    625,    2401,     14641,     28561,      83521, ...
A050997       32,    243,   3125,   16807,    161051,    371293,    1419857, ...
A030516       64,    729,  15625,  117649,   1771561,   4826809,   24137569, ...
A092759      128,   2187,  78125,  823543,  19487171,  62748517,  410338673, ...
A179645      256,   6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
		

Crossrefs

Other rows n: A030635 (n=16), A030637 (n=18), A137486 (n=22), A137492 (n=28), A139571 (n=30), A139572 (n=36), A139573 (n=40), A139574 (n=42), A139575 (n=46), A173533 (n=52), A183062 (n=58), A183085 (n=60), A261700 (n=100).
Main diagonal gives A093360.
Second diagonal gives A062457.
Third diagonal gives A197987.
Removing the 1's we have A182944/ A182945.

Programs

  • PARI
    T(n, k) = prime(k)^n;

Formula

T(n,k) = A000040(k)^n, n >= 0, k >= 1.

A069492 5-full numbers: if a prime p divides k then so does p^5.

Original entry on oeis.org

1, 32, 64, 128, 243, 256, 512, 729, 1024, 2048, 2187, 3125, 4096, 6561, 7776, 8192, 15552, 15625, 16384, 16807, 19683, 23328, 31104, 32768, 46656, 59049, 62208, 65536, 69984, 78125, 93312, 100000, 117649, 124416, 131072, 139968, 161051
Offset: 1

Views

Author

Benoit Cloitre, Apr 15 2002

Keywords

Comments

a(m) mod prime(n) > 0 for m < A258602(n); a(A258602(n)) = A050997(n) = prime(n)^5. - Reinhard Zumkeller, Jun 06 2015

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a069492 n = a069492_list !! (n-1)
    a069492_list = 1 : f (singleton z) [1, z] zs where
       f s q5s p5s'@(p5:p5s)
         | m < p5 = m : f (union (fromList $ map (* m) ps) s') q5s p5s'
         | otherwise = f (union (fromList $ map (* p5) q5s) s) (p5:q5s) p5s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a050997_list
    -- Reinhard Zumkeller, Jun 03 2015
    
  • PARI
    for(n=1,250000,if(n*sumdiv(n,d,isprime(d)/d^5)==floor(n*sumdiv(n,d,isprime(d)/d^5)),print1(n,",")))
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    Gen(170000, 5) \\ Andrew Howroyd, Sep 10 2024
    
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A069492(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for t in range(1,integer_nthroot(x,9)[0]+1):
                if all(d<=1 for d in factorint(t).values()):
                    for u in range(1,integer_nthroot(s:=x//t**9,8)[0]+1):
                        if gcd(t,u)==1 and all(d<=1 for d in factorint(u).values()):
                            for w in range(1,integer_nthroot(a:=s//u**8,7)[0]+1):
                                if gcd(u,w)==1 and gcd(t,w)==1 and all(d<=1 for d in factorint(w).values()):
                                    for y in range(1,integer_nthroot(z:=a//w**7,6)[0]+1):
                                        if gcd(w,y)==1 and gcd(u,y)==1 and gcd(t,y)==1 and all(d<=1 for d in factorint(y).values()):
                                            c -= integer_nthroot(z//y**6,5)[0]
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^4*(p-1))) = 1.0695724994489739263413712783666538355049945684326048537289707764272637... - Amiram Eldar, Jul 09 2020

A122616 Sums of 5th powers of primes.

Original entry on oeis.org

32, 64, 96, 128, 160, 192, 224, 243, 256, 275, 288, 307, 320, 339, 352, 371, 384, 403, 416, 435, 448, 467, 480, 486, 499, 512, 518, 531, 544, 550, 563, 576, 582, 595, 608, 614, 627, 640, 646, 659, 672, 678, 691, 704, 710, 723, 729, 736, 742, 755, 761, 768
Offset: 1

Views

Author

Jonathan Vos Post, Sep 21 2006

Keywords

Comments

After a finite number of integers which cannot be written as a sum of 5th powers of primes, all integers can be so written.

Crossrefs

Programs

  • Mathematica
    ok[n_] := {} != Quiet@ IntegerPartitions[n, All, Prime[ Range@ PrimePi@ Max[2, n^(1/5)]]^5, 1]; Select[Range[768], ok] (* Giovanni Resta, Jun 12 2016 *)

Formula

a(n) = a*32 + b*243 + c*3125 + d*16807 + e*161051 + ... where a,b,c,d,e,... are nonnegative integers. Sumset of A050997 Fifth powers of primes.

Extensions

Several missing terms from Giovanni Resta, Jun 12 2016

A133522 Smallest k such that p(n)^5 + k is prime where p(n) is the n-th prime.

Original entry on oeis.org

5, 8, 12, 4, 2, 6, 20, 22, 8, 8, 12, 22, 26, 30, 20, 20, 74, 52, 22, 26, 4, 22, 6, 42, 40, 8, 58, 44, 42, 8, 40, 6, 36, 28, 2, 28, 6, 4, 20, 14, 2, 12, 8, 46, 2, 40, 10, 4, 110, 12, 18, 44, 42, 6, 24, 20, 8, 28, 46, 2, 18, 6, 60, 36, 24, 2, 18, 4, 24, 48, 6, 30, 6, 6, 22, 6, 2, 6, 2, 40, 2
Offset: 1

Views

Author

Carl R. White, Sep 14 2007

Keywords

Examples

			p(2)=3, 3^5 = 243; for odd k and n > 1, p(n)^r - k is even and thus not prime, so we only need consider even k.
for k = 2: 243 + 2 = 245, which is 5 * 7^2 and not prime.
for k = 4: 243 + 4 = 247, which is 13 * 19, also not prime.
for k = 6: 243 + 6 = 249, which is 3 * 83, also not prime.
for k = 8: 243 + 8 = 251, which is prime, so 8 is the smallest number that can be added to 243 to make another prime.
Hence a(2) = 8.
		

Crossrefs

A060971 Number of fifth powers of primes <= 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9, 9, 11, 11, 13, 15, 16, 18, 21, 23, 25, 29, 31, 34, 39, 44, 47, 54, 62, 68, 76, 86, 97, 107, 122, 137, 154, 172, 193, 217, 244, 275, 309, 349, 393, 442, 499, 564, 635, 712, 807, 914, 1028, 1163, 1315, 1482
Offset: 0

Views

Author

Labos Elemer, May 09 2001

Keywords

Examples

			For n = 10: the 5th powers of primes not exceeding 2^10 = 1024 are 32 and 243, so a(10) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[ Floor[ 2^(g/5)//N ] ], {g, 0, 150} ]

Formula

a(5*n) = A007053(n). - Chai Wah Wu, Jan 23 2025
a(n) = A000720(A018117(n)). - Amiram Eldar, Mar 22 2025

Extensions

Missing a(0)=0 inserted by Sean A. Irvine, Jan 09 2023

A130555 Numbers that are sums of sixth powers of two distinct primes.

Original entry on oeis.org

793, 15689, 16354, 117713, 118378, 133274, 1771625, 1772290, 1787186, 1889210, 4826873, 4827538, 4842434, 4944458, 6598370, 24137633, 24138298, 24153194, 24255218, 25909130, 28964378, 47045945, 47046610, 47061506, 47163530
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2007

Keywords

Comments

This is to 6th powers as A130292 is to fifth powers, A130873 is to 4th powers and A120398 is to cubes. These can never be prime, as sixth powers are cubes and the sum of cubes factorizations applies. There are semiprimes for values beginning a(1) = 793, a(2) = 15689 = 29 * 541, a(4) = 117713 = 53 * 2221, a(11) = 4826873 = 173 * 27901.

Examples

			a(1) = prime(1)^6 + prime(2)^6 = 2^6 + 3^6 = 64 + 729 = 793 = 13 * 61.
		

Crossrefs

Programs

  • Mathematica
    Select[Sort[Flatten[Table[Prime[n]^6 + Prime[k]^6, {n, 15}, {k, n - 1}]]], # <= Prime[15^6] &]
    Union[Total/@Subsets[Prime[Range[20]]^6,{2}]] (* Harvey P. Dale, Mar 11 2012 *)

Formula

{A001014(A000040(i)) + A001014(A000040(j)) for i > j}.

A133541 Sum of fifth powers of five consecutive primes.

Original entry on oeis.org

181258, 552519, 1972133, 4445107, 10864643, 31214741, 59472599, 127396699, 240776801, 381348901, 590182759, 979749101, 1625329443, 2354069543, 3557186207, 5132070551, 6786946651, 9149078751, 12243523093, 16477457435
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=181258 because 2^5+3^5+5^5+7^5+11^5=181258.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[30]]^5,5,1] (* Harvey P. Dale, Dec 02 2017 *)

Formula

a(n) = A133527(n) + A050997(n+4). - Michel Marcus, Nov 09 2013

A138407 a(n) = p^4*(p-1), where p = prime(n).

Original entry on oeis.org

16, 162, 2500, 14406, 146410, 342732, 1336336, 2345778, 6156502, 19803868, 27705630, 67469796, 113030440, 143589642, 224465326, 410305012, 702806938, 830750460, 1329973986, 1778817670, 2044673352, 3038106318, 3891582322
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime((n))^5 - NthPrime((n))^4: n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, p^5 - p^4], {n, 1, 50}]; a
    f54[n_]:=Module[{c=Prime[n]},c^5-c^4]; Array[f54,30] (* Harvey P. Dale, Mar 29 2015 *)
  • PARI
    forprime(p=2,1e3,print1(p^5-p^4", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = A000010(prime(n)^5). - R. J. Mathar, Oct 15 2017
From Amiram Eldar, Nov 22 2022: (Start)
a(n) = prime(n)^5 - prime(n)^4 = A050997(n) - A030514(n).
Product_{n>=1} (1 - 1/a(n)) = A065416. (End)

Extensions

First Mathematica program corrected by Harvey P. Dale, Mar 29 2015

A275387 Numbers of ordered pairs of divisors d < e of n such that gcd(d, e) > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 6, 0, 8, 0, 8, 2, 2, 0, 18, 1, 2, 3, 8, 0, 15, 0, 10, 2, 2, 2, 24, 0, 2, 2, 18, 0, 15, 0, 8, 8, 2, 0, 32, 1, 8, 2, 8, 0, 18, 2, 18, 2, 2, 0, 44, 0, 2, 8, 15, 2, 15, 0, 8, 2, 15, 0, 49, 0, 2, 8, 8, 2, 15, 0, 32, 6, 2
Offset: 1

Views

Author

Michel Lagneau, Aug 03 2016

Keywords

Comments

Number of elements in the set {(x, y): x|n, y|n, x < y, gcd(x, y) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n)=0 if n prime;
a(n)=1 if n = p^2 for p prime (A001248);
a(n)=2 if n is a squarefree semiprime (A006881);
a(n)=3 if n = p^3 for p prime (A030078);
a(n)=6 if n = p^4 for p prime (A030514);
a(n)=8 if n is a number which is the product of a prime and the square of a different prime (A054753);
a(n)=10 if n = p^5 for p prime (A050997);
a(n)=15 if n is in the set {A007304} union {64} = {30, 42, 64, 66, 70,...} = {Sphenic numbers} union {64};
a(n)=18 if n is the product of the cube of a prime (A030078) and a different prime (see A065036);
a(n)=21 if n = p^7 for p prime (A092759);
a(n)=24 if n is square of a squarefree semiprime (A085986);
a(n)=32 if n is the product of the 4th power of a prime (A030514) and a different prime (see A178739);
a(n)=36 if n = p^9 for p prime (A179665);
a(n)=44 if n is the product of exactly four primes, three of which are distinct (A085987);
a(n)=45 if n is a number with 11 divisors (A030629);
a(n)=49 if n is of the form p^2*q^3, where p,q are distinct primes (A143610);
a(n)=50 if n is the product of the 5th power of a prime (A050997) and a different prime (see A178740);
a(n)=55 if n if n = p^11 for p prime(A079395);
a(n)=72 if n is a number with 14 divisors (A030632);
a(n)=80 if n is the product of four distinct primes (A046386);
a(n)=83 if n is a number with 15 divisors (A030633);
a(n)=89 if n is a number with prime factorization pqr^3 (A189975);
a(n)=96 if n is a number that are the cube of a product of two distinct primes (A162142);
a(n)=98 if n is the product of the 7th power of a prime and a distinct prime (p^7*q) (A179664);
a(n)=116 if n is the product of exactly 2 distinct squares of primes and a different prime (p^2*q^2*r) (A179643);
a(n)=126 if n is the product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2) (A179646);
a(n)=128 if n is the product of the 8th power of a prime and a distinct prime (p^8*q) (A179668);
a(n)=150 if n is the product of the 4th power of a prime and 2 different distinct primes (p^4*q*r) (A179644);
a(n)=159 if n is the product of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3) (A179666).
It is possible to continue with a(n) = 162, 178, 209, 224, 227, 238, 239, 260, 289, 309, 320, 333,...

Examples

			a(12) = 8 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j)>1 for the 8 following pairs of divisors: (2,4), (2,6), (2,12), (3,6), (3,12), (4,6), (4,12) and (6,12).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
    x:=divisors(n):n0:=nops(x):it:=0:
    for i from 1 to n0 do:
      for j from i+1 to n0 do:
       if gcd(x[i],x[j])>1
        then
        it:=it+1:
        else
       fi:
      od:
    od:
      printf(`%d, `,it):
    od:
  • Mathematica
    Table[Sum[Sum[(1 - KroneckerDelta[GCD[i, k], 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Jan 01 2021 *)
  • PARI
    a(n)=my(d=divisors(n)); sum(i=2,#d, sum(j=1,i-1, gcd(d[i],d[j])>1)) \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    a(n)=my(f=factor(n)[,2],t=prod(i=1,#f,f[i]+1)); t*(t-1)/2 - (prod(i=1,#f,2*f[i]+1)+1)/2 \\ Charles R Greathouse IV, Aug 03 2016

Formula

a(n) = A066446(n) - A063647(n).
a(n) = Sum_{d1|n, d2|n, d1Wesley Ivan Hurt, Jan 01 2021
Previous Showing 31-40 of 73 results. Next