cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 106 results. Next

A326027 Number of nonempty subsets of {1..n} whose geometric mean is an integer.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 12, 19, 20, 21, 28, 29, 30, 31, 40, 41, 70, 71, 74, 75, 76, 77, 108, 123, 124, 211, 214, 215, 216, 217, 332, 333, 334, 335, 592, 593, 594, 595, 612, 613, 614, 615, 618, 639, 640, 641, 1160, 1183, 1324, 1325, 1328, 1329, 2176, 2177, 2196, 2197, 2198, 2199, 2414, 2415, 2416, 2443, 4000, 4001, 4002, 4003, 4006, 4007, 4008, 4009, 6626, 6627, 6628, 9753, 9756, 9757, 9758, 9759, 11136
Offset: 0

Views

Author

Gus Wiseman, Jul 14 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 19 subsets:
  {1}  {1}  {1}  {1}      {1}      {1}      {1}      {1}      {1}
       {2}  {2}  {2}      {2}      {2}      {2}      {2}      {2}
            {3}  {3}      {3}      {3}      {3}      {3}      {3}
                 {4}      {4}      {4}      {4}      {4}      {4}
                 {1,4}    {5}      {5}      {5}      {5}      {5}
                 {1,2,4}  {1,4}    {6}      {6}      {6}      {6}
                          {1,2,4}  {1,4}    {7}      {7}      {7}
                                   {1,2,4}  {1,4}    {8}      {8}
                                            {1,2,4}  {1,4}    {9}
                                                     {2,8}    {1,4}
                                                     {1,2,4}  {1,9}
                                                     {2,4,8}  {2,8}
                                                              {4,9}
                                                              {1,2,4}
                                                              {1,3,9}
                                                              {2,4,8}
                                                              {3,8,9}
                                                              {4,6,9}
                                                              {3,6,8,9}
		

Crossrefs

First differences are A082553.
Partitions whose geometric mean is an integer are A067539.
Strict partitions whose geometric mean is an integer are A326625.
Subsets whose average is an integer are A051293.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],IntegerQ[GeometricMean[#]]&]],{n,0,10}]

Formula

a(n) = A357413(n) + A357414(n). For a squarefree n, a(n) = a(n-1) + 1. - Max Alekseyev, Mar 01 2025

Extensions

Terms a(57) onward from Max Alekseyev, Mar 01 2025

A327481 Triangle read by rows where T(n,k) is the number of nonempty subsets of {1..n} with mean k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 7, 3, 1, 1, 3, 9, 9, 3, 1, 1, 3, 9, 19, 9, 3, 1, 1, 3, 9, 25, 25, 9, 3, 1, 1, 3, 9, 29, 51, 29, 9, 3, 1, 1, 3, 9, 31, 75, 75, 31, 9, 3, 1, 1, 3, 9, 31, 93, 151, 93, 31, 9, 3, 1, 1, 3, 9, 31, 105, 235, 235, 105, 31, 9, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2019

Keywords

Comments

All terms are odd.

Examples

			Triangle begins:
                         1
                       1   1
                     1   3   1
                   1   3   3   1
                 1   3   7   3   1
               1   3   9   9   3   1
             1   3   9  19   9   3   1
           1   3   9  25  25   9   3   1
         1   3   9  29  51  29   9   3   1
       1   3   9  31  75  75  31   9   3   1
     1   3   9  31  93 151  93  31   9   3   1
   1   3   9  31 105 235 235 105  31   9   3   1
The subsets counted in row n = 5:
  {1}  {2}      {3}          {4}      {5}
       {1,3}    {1,5}        {3,5}
       {1,2,3}  {2,4}        {3,4,5}
                {1,3,5}
                {2,3,4}
                {1,2,4,5}
                {1,2,3,4,5}
		

Crossrefs

Row sums are A051293.
The sequence of rows converges to A066571.
The version for partitions is A327482.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Mean[#]==k&]],{n,10},{k,n}]

A348551 Heinz numbers of integer partitions whose mean is not an integer.

Original entry on oeis.org

1, 6, 12, 14, 15, 18, 20, 24, 26, 33, 35, 36, 38, 40, 42, 44, 45, 48, 50, 51, 52, 54, 56, 58, 60, 63, 65, 66, 69, 70, 72, 74, 75, 76, 77, 80, 86, 92, 93, 95, 96, 102, 104, 106, 108, 112, 114, 117, 119, 120, 122, 123, 124, 126, 130, 132, 135, 136, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2021

Keywords

Comments

Equivalently, partitions whose length does not divide their sum.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms and their prime indices begin:
   1: {}
   6: {1,2}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  26: {1,6}
  33: {2,5}
  35: {3,4}
  36: {1,1,2,2}
  38: {1,8}
  40: {1,1,1,3}
  42: {1,2,4}
  44: {1,1,5}
  45: {2,2,3}
  48: {1,1,1,1,2}
		

Crossrefs

A version counting nonempty subsets is A000079 - A051293.
A version counting factorizations is A001055 - A326622.
A version counting compositions is A011782 - A271654.
A version for prime factors is A175352, complement A078175.
A version for distinct prime factors A176587, complement A078174.
The complement is A316413, counted by A067538, strict A102627.
The geometric version is the complement of A326623.
The conjugate version is the complement of A326836.
These partitions are counted by A349156.
A000041 counts partitions.
A001222 counts prime factors with multiplicity.
A018818 counts partitions into divisors, ranked by A326841.
A143773 counts partitions into multiples of the length, ranked by A316428.
A236634 counts unbalanced partitions.
A047993 counts balanced partitions, ranked by A106529.
A056239 adds up prime indices, row sums of A112798.
A326567/A326568 gives the mean of prime indices, conjugate A326839/A326840.
A327472 counts partitions not containing their mean, complement A237984.

Programs

  • Maple
    q:= n-> (l-> nops(l)=0 or irem(add(i, i=l), nops(l))>0)(map
            (i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])):
    select(q, [$1..142])[];  # Alois P. Heinz, Nov 19 2021
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!IntegerQ[Mean[primeMS[#]]]&]

A326674 GCD of the set of positions of 1's in the reversed binary expansion of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Comments

a(n) is even if and only if n is in A062880. - Robert Israel, Oct 13 2020

Examples

			The reversed binary expansion of 40 is (0,0,0,1,0,1), with positions of 1's being {4,6}, so a(40) = GCD(4,6) = 2.
		

Crossrefs

Positions of 1's are A291166, and non-1's are A291165.
GCDs of prime indices are A289508.
GCDs of strict partitions encoded by FDH numbers are A319826.
Numbers whose binary positions are pairwise coprime are A326675.

Programs

  • Maple
    f:= proc(n) local B;
      B:= convert(n,base,2);
      igcd(op(select(t -> B[t]=1, [$1..ilog2(n)+1])))
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 13 2020
  • Mathematica
    Table[GCD@@Join@@Position[Reverse[IntegerDigits[n,2]],1],{n,100}]

Formula

Trivially, a(n) <= log_2(n). - Charles R Greathouse IV, Nov 15 2022

A326621 Numbers n such that the average of the set of distinct prime indices of n is an integer.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 30, 31, 32, 34, 37, 39, 40, 41, 43, 44, 46, 47, 49, 50, 53, 55, 57, 59, 60, 61, 62, 63, 64, 67, 68, 71, 73, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 97, 100, 101, 103, 105
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose distinct parts have an integer average.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100],IntegerQ[Mean[PrimePi/@First/@FactorInteger[#]]]&]

A326669 Numbers k such that the average position of the ones in the binary expansion of k is an integer.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 14, 16, 17, 20, 21, 27, 28, 31, 32, 34, 35, 39, 40, 42, 49, 54, 56, 57, 62, 64, 65, 68, 70, 73, 78, 80, 84, 85, 93, 98, 99, 107, 108, 112, 114, 119, 124, 127, 128, 130, 133, 136, 140, 141, 146, 147, 155, 156, 160, 161, 167, 168, 170, 175
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Comments

These are numbers whose exponents in their representation as a sum of distinct powers of 2 have integer average.

Examples

			42 is in the sequence because 42 = 2^1 + 2^3 + 2^5 and the average of {1,3,5} is 3, an integer.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],IntegerQ[Mean[Join@@Position[IntegerDigits[#,2],1]]]&]
  • PARI
    isok(m) = my(b=binary(m)); denominator(vecsum(Vec(select(x->(x==1), b, 1)))/hammingweight(m)) == 1; \\ Michel Marcus, Jul 02 2021

A082550 Number of sets of distinct positive integers whose arithmetic mean is an integer, the largest integer of the set being n.

Original entry on oeis.org

1, 1, 3, 3, 7, 11, 19, 31, 59, 103, 187, 343, 631, 1171, 2191, 4095, 7711, 14571, 27595, 52431, 99879, 190651, 364723, 699071, 1342183, 2581111, 4971067, 9586983, 18512791, 35791471, 69273667, 134217727, 260301175, 505290271, 981706831, 1908874583, 3714566311
Offset: 1

Views

Author

Naohiro Nomoto, May 03 2003

Keywords

Comments

Equivalently, number of nonempty subsets of [n] the sum of whose elements is divisible by n. - Dimitri Papadopoulos, Jan 18 2016

Examples

			a(5) = 7: the seven sets are (1+2+3+4+5)/5 = 3, 5/1 = 5, (1+5)/2 = 3, (1+3+5)/3 = 3, (3+5)/2 = 4, (3+4+5)/3 = 4, (1+2+4+5)/4 = 3.
		

Crossrefs

Row sums of A267632.

Programs

  • Mathematica
    Table[Length[Select[Select[Subsets[Range[n]],Max[#]==n&], IntegerQ[ Mean[ #]]&]], {n,22}] (* Harvey P. Dale, Jul 23 2011 *)
    Table[Total[Table[Length[Select[Select[Subsets[Range[n]], Length[#] == k &],IntegerQ[Total[#]/n] &]], {k, n}]], {n, 10}] (* Dimitri Papadopoulos, Jan 18 2016 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2)* 2^(n/d)*eulerphi(d))/n - 1; \\ Michel Marcus, Feb 10 2016
    
  • Python
    from sympy import totient, divisors
    def A082550(n): return (sum(totient(d)<>(~n&n-1).bit_length(),generator=True))<<1)//n-1 # Chai Wah Wu, Feb 22 2023

Formula

a(n) = A063776(n) - 1.
a(n) = A051293(n+1) - A051293(n). - Reinhard Zumkeller, Feb 19 2006
a(n) = A008965(n) for odd n. - Dimitri Papadopoulos, Jan 18 2016
G.f.: -x/(1 - x) - Sum_{m >= 0} (phi(2*m + 1)/(2*m + 1)) * log(1 - 2*x^(2*m + 1)). - Petros Hadjicostas, Jul 13 2019
a(n) = A309402(n,n). - Alois P. Heinz, Jul 28 2019

Extensions

a(22) from Harvey P. Dale, Jul 23 2011
a(23)-a(32) from Dimitri Papadopoulos, Jan 18 2016

A063776 Number of subsets of {1,2,...,n} which sum to 0 modulo n.

Original entry on oeis.org

2, 2, 4, 4, 8, 12, 20, 32, 60, 104, 188, 344, 632, 1172, 2192, 4096, 7712, 14572, 27596, 52432, 99880, 190652, 364724, 699072, 1342184, 2581112, 4971068, 9586984, 18512792, 35791472, 69273668, 134217728, 260301176, 505290272, 981706832
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 16 2001

Keywords

Comments

From Gus Wiseman, Sep 14 2019: (Start)
Also the number of subsets of {1..n} that are empty or contain n and have integer mean. If the subsets are not required to contain n, we get A327475. For example, the a(1) = 2 through a(6) = 12 subsets are:
{} {} {} {} {} {}
{1} {2} {3} {4} {5} {6}
{1,3} {2,4} {1,5} {2,6}
{1,2,3} {2,3,4} {3,5} {4,6}
{1,3,5} {1,2,6}
{3,4,5} {1,5,6}
{1,2,4,5} {2,4,6}
{1,2,3,4,5} {4,5,6}
{1,2,3,6}
{1,4,5,6}
{2,3,5,6}
{2,3,4,5,6}
(End)

Examples

			G.f. = 2*x + 2*x^2 + 4*x^3 + 4*x^4 + 8*x^5 + 12*x^6 + 20*x^7 + 32*x^8 + 60*x^9 + ...
		

Crossrefs

Programs

  • Haskell
    a063776 n = a053636 n `div` n  -- Reinhard Zumkeller, Sep 13 2013
    
  • Mathematica
    Table[a = Select[ Divisors[n], OddQ[ # ] &]; Apply[Plus, 2^(n/a)*EulerPhi[a]]/n, {n, 1, 35}]
    a[ n_] := If[ n < 1, 0, 1/n Sum[ Mod[ d, 2] EulerPhi[ d] 2^(n / d), {d, Divisors[ n]}]]; (* Michael Somos, May 09 2013 *)
    Table[Length[Select[Subsets[Range[n]],#=={}||MemberQ[#,n]&&IntegerQ[Mean[#]]&]],{n,0,10}] (* Gus Wiseman, Sep 14 2019 *)
  • PARI
    {a(n) = if( n<1, 0, 1 / n * sumdiv( n, d, (d % 2) * eulerphi(d) * 2^(n / d)))}; /* Michael Somos, May 09 2013 */
    
  • PARI
    a(n) = sumdiv(n, d, (d%2)* 2^(n/d)*eulerphi(d))/n; \\ Michel Marcus, Feb 10 2016
    
  • Python
    from sympy import totient, divisors
    def A063776(n): return (sum(totient(d)<>(~n&n-1).bit_length(),generator=True))<<1)//n # Chai Wah Wu, Feb 21 2023

Formula

a(n) = (1/n) * Sum_{d divides n and d is odd} 2^(n/d) * phi(d).
a(n) = (1/n) * A053636(n). - Michael Somos, May 09 2013
a(n) = 2 * A000016(n).
For odd n, a(n) = A000031(n).
G.f.: -Sum_{m >= 0} (phi(2*m + 1)/(2*m + 1)) * log(1 - 2*x^(2*m + 1)). - Petros Hadjicostas, Jul 13 2019
a(n) = A082550(n) + 1. - Gus Wiseman, Sep 14 2019

Extensions

More terms from Vladeta Jovovic, Aug 20 2001

A363944 Mean of the multiset of prime indices of n, rounded up.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 2, 5, 2, 6, 3, 3, 1, 7, 2, 8, 2, 3, 3, 9, 2, 3, 4, 2, 2, 10, 2, 11, 1, 4, 4, 4, 2, 12, 5, 4, 2, 13, 3, 14, 3, 3, 5, 15, 2, 4, 3, 5, 3, 16, 2, 4, 2, 5, 6, 17, 2, 18, 6, 3, 1, 5, 3, 19, 3, 6, 3, 20, 2, 21, 7, 3, 4, 5, 3, 22, 2, 2, 7
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Extending the terminology introduced at A124944, this is the "high mean" of prime indices.

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with mean 3/2, so a(360) = 2.
		

Crossrefs

Positions of first appearances are 1 and A000040.
Positions of 1's are A000079(n>0).
Before rounding up we had A326567/A326568.
For mode instead of mean we have A363487, low A363486.
For median instead of mean we have A363942, triangle A124944.
Rounding down instead of up gives A363943, triangle A363945.
The triangle for this statistic (high mean) is A363946.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363947 ranks partitions with rounded mean 1, counted by A363948.
A363949 ranks partitions with low mean 1, counted by A025065.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
    meanup[y_]:=If[Length[y]==0,0,Ceiling[Mean[y]]];
    Table[meanup[prix[n]],{n,100}]

A326515 Number of factorizations of n into factors > 1 where every factor has the same average of prime indices.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 7, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(900) = 9 factorizations:
  (3*3*10*10),
  (3*3*100), (3*10*30), (9*10*10),
  (3*300), (9*100), (10*90), (30*30),
  (900).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],SameQ@@Mean/@primeMS/@#&]],{n,100}]
  • PARI
    avgpis(n) = { my(f=factor(n)); f[,1] = apply(primepi,f[,1]); (1/bigomega(n))*sum(i=1,#f~,f[i,2]*f[i,1]); };
    has_same_average_of_pis(facs) = if(!#facs, 1, my(avg=0); for(i=1,#facs,if(!avg, avg=avgpis(facs[i]), if(avg!=avgpis(facs[i]), return(0)))); (1));
    A326515(n, m=n, facs=List([])) = if(1==n, has_same_average_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A326515(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025
Previous Showing 11-20 of 106 results. Next