cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A106617 Numerator of n/(n+16).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 2, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 4, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77, 39, 79
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019

Examples

			From _Peter Bala_, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - 2*G(x^2) - 4*G(x^4) - 8*G(x^8) - 16*G(x^16), where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} n^2*a(n)*x^n = H(x) - 2^2*H(x^2) - 4^2*H(x^4) - 8^2*H(x^8) - 16^2*H(x^16), where H(x) = x*(1 + 4*x + x^2)/(1 - x)^4. In general, the o.g.f. for Sum_{n >= 1} (n^k*a(n))*x^n for positive k involves the Eulerian polynomials.
In the other direction,
Sum_{n >= 1} (a(n)/n)*x^n = J(x) - (1/2)*J(x^2) - (1/4)*J(x^4) - (1/8)*J(x^8) - (1/16)*J(x^16), where J(x) = x/(1 - x).
Sum_{n >= 1} (a(n)/n^2)*x^n = L(x) - (1/2^2)*L(x^2) - (1/4^2)*L(x^4) - (1/8^2)*L(x^8) - (1/16^2)*L(x^16), where L(x) = log(1/(1 - x)). In general, the o.g.f. for Sum_{n >= 0} (a(n)/n^k)*x^n, for k >= 3, involves the polylogarithm Li_(k-1)(x).
Sum_{n >= 1} (1/a(n))*x^n = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8) + (1/2)*L(x^16). (End)
		

Crossrefs

Cf. Other sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

a(n) = 2*a(n-16) - a(n-32) for n > 31. - Paul Curtz, Apr 12 2011
Octosections: a(8*n) = A026741(n). a(2+8*n) = 1+4*n. a(4+8*n) = 1+2*n. a(6+8*n) = 3+4*n. Bisection: a(1+2*n) = 1+2*n. - Paul Curtz, Apr 12 2011
Dirichlet g.f.: zeta(s-1)*(1-1/2^s-1/4^s-1/8^s-1/16^s). - R. J. Mathar, Apr 18 2011
a(n) = numerator of n/(2^(2*n+1)). - Ralf Steiner, Feb 09 2017
The previous comment is incorrect, a(n) first differs from the numerator of n/(2^(2*n+1)) at n = 32. - Peter Bala, Feb 27 2019
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,16), where gcd(n,16) = [1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, ...] is a periodic sequence of period 16: a(n) is thus quasi_polynomial in n.
O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - F(x^2) - F(x^4) - F(x^8) - F(x^16), where F(x) = x/(1 - x)^2.
More generally, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 2^m)*( F(m,x^2) + F(m,x^4) + F(m,x^8) + F(m,x^16) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m-th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence produces generating functions for the sequences ( (n^m)*a(n) )n>=1 for m in Z. Some examples are given below. (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^max(0,e-4), and a(p^e) = p^e if p>2.
Sum_{k=1..n} a(k) ~ (171/512) * n^2. (End)

A106619 a(n) = numerator of n/(n+18).

Original entry on oeis.org

0, 1, 1, 1, 2, 5, 1, 7, 4, 1, 5, 11, 2, 13, 7, 5, 8, 17, 1, 19, 10, 7, 11, 23, 4, 25, 13, 3, 14, 29, 5, 31, 16, 11, 17, 35, 2, 37, 19, 13, 20, 41, 7, 43, 22, 5, 23, 47, 8, 49, 25, 17, 26, 53, 3, 55, 28, 19, 29, 59, 10, 61, 31, 7, 32, 65, 11, 67, 34, 23, 35, 71, 4, 73, 37, 25, 38, 77, 13, 79
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

a(n+3), n >= 0, is the denominator of the harmonic mean H(n,3) = 6*n/(n+3). a(n+3) = (n+3)/gcd(n+3,18). - Wolfdieter Lang, Jul 04 2013

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).
Cf. A227042.

Programs

Formula

a(n) = 2*a(n-18) - a(n-36). - Paul Curtz, Feb 27 2011
Nonasection: a(9*n) = A026741(n). - Paul Curtz, Mar 21 2011
Dirichlet g.f.: zeta(s-1)*(1 - 2/3^s - 2/9^s - 1/2^s + 2/6^s + 2/18^s). - R. J. Mathar, Apr 18 2011
a(n) = n/gcd(n,18), n >= 0. See the harmonic mean comment above, and the Zerinvary Lajos program below. - Wolfdieter Lang, Jul 04 2013
a(n+3) = A227042(n+3,3), n >= 0. - Wolfdieter Lang, Jul 04 2013
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^max(0, e-1), a(3^e) = 3^max(0,e-2), and a(p^e) = p^e otherwise.
Sum_{k=1..n} a(k) ~ (61/216) * n^2. (End)

A106611 a(n) = numerator of n/(n+10).

Original entry on oeis.org

0, 1, 1, 3, 2, 1, 3, 7, 4, 9, 1, 11, 6, 13, 7, 3, 8, 17, 9, 19, 2, 21, 11, 23, 12, 5, 13, 27, 14, 29, 3, 31, 16, 33, 17, 7, 18, 37, 19, 39, 4, 41, 21, 43, 22, 9, 23, 47, 24, 49, 5, 51, 26, 53, 27, 11, 28, 57, 29, 59, 6, 61, 31, 63, 32, 13, 33, 67, 34, 69, 7, 71, 36, 73, 37, 15, 38, 77, 39
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

A strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n,m >= 1. It follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 17 2019

Crossrefs

Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109051(n)/10.
Dirichlet g.f.: zeta(s-1)*(1 - 4/5^s - 1/2^s + 4/10^s).
Multiplicative with a(2^e) = 2^max(0,e-1), a(5^e) = 5^max(0,e-1), a(p^e) = p^e if p = 3 or p >= 7. (End)
From Peter Bala, Feb 17 2019: (Start)
a(n) = numerator(n/((n + 2)*(n + 5))).
a(n) = n/b(n), where b(n) = [1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, ...] is a purely periodic sequence of period 10. Thus a(n) is a quasi-polynomial in n.
If gcd(n,m) = 1 then a( a(n)*a(m) ) = a(a(n)) * a(a(m)), a( a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on.
O.g.f.: Sum_{d divides 10} A023900(d)*x^d/(1 - x^d)^2 = x/(1 - x)^2 - x^2/(1 - x^2)^2 - 4*x^5/(1 - x^5)^2 + 4*x^10/(1 - x^10)^2.
(End)
Sum_{k=1..n} a(k) ~ (63/200) * n^2. - Amiram Eldar, Nov 25 2022

A106615 a(n) = numerator of n/(n+14).

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 3, 1, 4, 9, 5, 11, 6, 13, 1, 15, 8, 17, 9, 19, 10, 3, 11, 23, 12, 25, 13, 27, 2, 29, 15, 31, 16, 33, 17, 5, 18, 37, 19, 39, 20, 41, 3, 43, 22, 45, 23, 47, 24, 7, 25, 51, 26, 53, 27, 55, 4, 57, 29, 59, 30, 61, 31, 9, 32, 65, 33, 67, 34, 69, 5, 71, 36, 73, 37, 75, 38, 11, 39
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

A multiplicative function and also a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. It follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 22 2019

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

Dirichlet g.f.: zeta(s-1)*(1 - 6/7^s - 1/2^s + 6/14^s). - R. J. Mathar, Apr 18 2011
a(n) = 2*a(n-14) - a(n-28). - G. C. Greubel, Feb 19 2019
From Peter Bala, Feb 22 2019: (Start)
a(n) = n/gcd(n,14).
a(n) = n/b(n), where b(n) = [1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 14, ...] is a purely periodic sequence of period 14. Thus a(n) is a quasi-polynomial in n.
If gcd(n,m) = 1 then a( a(n)*a(m) ) = a(a(n)) * a(a(m)), a( a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on.
O.g.f.: Sum_{d divides 14} A023900(d)*x^d/(1 - x^d)^2 = x/(1 - x)^2 - x^2/(1 - x^2)^2 - 6*x^7/(1 - x^7)^2 + 6*x^14/(1 - x^14)^2.
O.g.f. for reciprocals: Sum_{n >= 1} (1/a(n))*x^n = L(x) + 1/2*L(x^2) + 6/7*L(x^7) + 6/14*L(x^14), where L(x) = log (1/(1 - x)). (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^max(0,e-1), a(7^e) = 7^max(0,e-1), and a(p^e) = p^e otherwise.
Sum_{k=1..n} a(k) ~ (129/392) * n^2. (End)

A106620 a(n) = numerator of n/(n+19).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 2, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 3, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

a(n) <> n iff n = 19 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

Dirichlet g.f.: zeta(s-1)*(1 - 18/19^s). - R. J. Mathar, Apr 18 2011
a(n) = 2*a(n-19) - a(n-38). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(19^e) = 19^(e-1), and a(p^e) = p^e if p != 19.
Sum_{k=1..n} a(k) ~ (343/722) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 37*log(2)/19. - Amiram Eldar, Sep 08 2023

A146307 a(n) = denominator of (n-6)/(2n) = denominator of (n+6)/(2n).

Original entry on oeis.org

2, 1, 2, 4, 10, 1, 14, 8, 6, 5, 22, 4, 26, 7, 10, 16, 34, 3, 38, 20, 14, 11, 46, 8, 50, 13, 18, 28, 58, 5, 62, 32, 22, 17, 70, 12, 74, 19, 26, 40, 82, 7, 86, 44, 30, 23, 94, 16, 98, 25, 34, 52, 106, 9, 110, 56, 38, 29, 118, 20, 122, 31, 42, 64, 130, 11, 134, 68, 46, 35, 142, 24
Offset: 1

Views

Author

Artur Jasinski, Oct 29 2008

Keywords

Comments

For numerators see A146306.
General formula:
2*cos(2*Pi/n) = Hypergeometric2F1((n-6)/(2n), (n+6)/(2n), 1/2, 3/4) =
Hypergeometric2F1(A146306(n)/a(n), A146306(n+12)/a(n), 1/2, 3/4).
2*cos(2*Pi/n) is a root of a polynomial of degree EulerPhi(n)/2 = A000010(n)/2 = A023022(n).
Records in this sequence are even and are congruent to 2 or 10 mod 12 (see A091999).
Indices where odd numbers occur in this sequence are 4n-2 (see A016825).
Indices where prime numbers occur in this sequence see A146309.
From Robert Israel, Apr 21 2021: (Start)
a(n) = 2*n if n == 1, 5, 7 or 11 (mod 12).
a(n) = n if n == 4 or 8 (mod 12).
a(n) = 2*n/3 if n == 3 or 9 (mod 12).
a(n) = n/2 if n == 2 or 10 (mod 12).
a(n) = n/3 if n == 0 (mod 12).
a(n) = n/6 if n == 6 (mod 12). (End)
Sum_{k=1..n} a(k) ~ (77/144) * n^2. - Amiram Eldar, Apr 04 2024

Crossrefs

Cf. A007310, A051724, A091999, A146306 (numerators), A146308.

Programs

  • Maple
    f:= n -> denom((n-6)/(2*n)):
    map(f, [$1..100]); # Robert Israel, Apr 20 2021
  • Mathematica
    Table[Denominator[(n - 6)/(2 n)], {n, 1, 100}]
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,-1},{2,1,2,4,10,1,14,8,6,5,22,4,26,7,10,16,34,3,38,20,14,11,46,8},80] (* Harvey P. Dale, May 15 2022 *)

A146308 a(n) is the smallest k such that the numerator of (k-6)/(2k) equals n.

Original entry on oeis.org

6, 7, 14, 15, 22, 11, 78, 13, 38, 33, 46, 17, 150, 19, 62, 51, 70, 23, 222, 25, 86, 69, 94, 29, 294, 31, 110, 87, 118, 35, 366, 37, 134, 105, 142, 41, 438, 43, 158, 123, 166, 47, 510, 49, 182, 141, 190, 53, 582, 55, 206, 159, 214, 59, 654, 61, 230, 177, 238, 65, 726
Offset: 0

Views

Author

Artur Jasinski, Oct 29 2008

Keywords

Comments

a(n) = index of first occurrence n in A146306.
General formula:
2*cos(2*Pi/n) = Hypergeometric2F1((n-6)/(2n), (n+6)/(2n), 1/2, 3/4) = Hypergeometric2F1(A146306(n)/A146307(n), A146306(n+12)/A146307(n), 1/2, 3/4).
2*cos(2*Pi/n) is root of polynomial of degree = EulerPhi(n)/2 = A000010(n)/2 = A023022(n).

Crossrefs

Programs

  • Maple
    f:= proc(n) if n mod 6 = 0 then 12*n+6 elif n::even then 4*n+6 elif n mod 3 = 0 then 3*n+6 else n+6 fi end proc:
    map(f, [$0..100]); # Robert Israel, Aug 05 2019
  • Mathematica
    aa = {}; Do[k = 1; While[Numerator[(k - 6)/(2 k)] != n, k++ ]; AppendTo[aa, k], {n, 0, 100}]; aa

Formula

From Robert Israel, Aug 05 2019: (Start)
If 6 | n then a(n) = 12*n+6
else if 3 | n then a(n) = 3*n+6
else if 2 | n then a(n) = 2*n+6
else a(n) = n+6.
a(n) = 2*a(n-6) - a(n-12).
G.f.: (6 + 7*x + 14*x^2 + 15*x^3 + 22*x^4 + 11*x^5 + 66*x^6 - x^7 + 10*x^8 + 3*x^9 + 2*x^10 - 5*x^11)/(1 - 2*x^6 + x^12). (End)

A208950 a(4*n) = n*(16*n^2-1)/3, a(2*n+1) = n*(n+1)*(2*n+1)/6, a(4*n+2) = (4*n+1)*(4*n+2)*(4*n+3)/6.

Original entry on oeis.org

0, 0, 1, 1, 5, 5, 35, 14, 42, 30, 165, 55, 143, 91, 455, 140, 340, 204, 969, 285, 665, 385, 1771, 506, 1150, 650, 2925, 819, 1827, 1015, 4495, 1240, 2728, 1496, 6545, 1785, 3885, 2109, 9139, 2470, 5330, 2870, 12341, 3311, 7095, 3795, 16215, 4324
Offset: 0

Views

Author

Paul Curtz, Mar 03 2012

Keywords

Comments

a(n+2) is divisible by A060819(floor(n/3)).
a(n) is divisible by A176672(floor(n/3)).
Denominator of a(n)/n is of period 24: 1,1,3,4,1,6,1,4,3,1,1,12,1,2,3,4,1,3,1,4,3,2,1,12 (two successive palindromes).
This is the fifth column of the triangle A107711, hence the formula involving gcd(n+2,4) given below follows. - Wolfdieter Lang, Feb 24 2014

Crossrefs

Programs

  • Magma
    [Binomial(n+1,3)*GCD(n+2,4)/4: n in [0..50]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    CoefficientList[Series[(x^2 + x^3 + 5 x^4 + 5 x^5 + 31 x^6 + 10 x^7 + 22 x^8 + 10 x^9 + 31 x^10 + 5 x^11 + 5 x^12 + x^13 + x^14)/((1 - x)^4 (1 + x)^4 (1 + 4 x^2 + 6 x^4 + 4 x^6 + x^8)), {x, 0, 47}], x] (* Bruno Berselli, Mar 11 2012 *)
  • Maxima
    A208950(n) := block(
            [a,npr] ,
            if equal(mod(n,4), 0) then (
                    a : n/12*(n^2-1)
            ) else if equal(mod(n,2),0) then (
                    a : (n-1)*n*(n+1)/6
            ) else (
                    npr : (n-1)/2,
                    a : npr*(npr+1)*n/6
            ) ,
            return(a)
    )$ /* R. J. Mathar, Mar 10 2012 */
    
  • PARI
    vector(50, n, n--; binomial(n+1,3)*gcd(n+2,4)/4) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n) = 4*a(n-4) - 6*a(n-8) + 4*a(n-12) - a(n-16).
a(n+1) = A002415(n+1)/A145979(n-1).
a(n) = A051724(n-1) * A051724(n) * A051724(n+1).
a(n) = A060819(n-1) * A060819(n) * A060819(n+1) / 3.
a(n) * a(n+4) = A061037(n+1) * A061037(n+2) * A061037(n+3) / 9.
a(n) = A138190(n)/A000034(n) for n > 0.
a(n) = A000292(n-1)/A176895(n+2) for n > 0.
a(n)/a(n+4) = n*(n^2-1)/((n+3)*(n+4)*(n+5)).
a(n)/a(n+12) = (n-1)*n*(n+1)/((n+11)*(n+12)*(n+13)).
G.f.: (x^2 + x^3 + 5*x^4 + 5*x^5 + 31*x^6 + 10*x^7 + 22*x^8 + 10*x^9 + 31*x^10 + 5*x^11 + 5*x^12 + x^13 + x^14) / ((1-x)^4*(1+x)^4*(1 + 4*x^2 + 6*x^4 + 4*x^6 + x^8)). - R. J. Mathar, Mar 10 2012
From Wolfdieter Lang, Feb 24 2014: (Start)
G.f.: (1 + x^12 + x*(1+x^10) + 5*x^2*(1+x^8) + 5*x^3*(1+x^7) + 31*x^4*(1+x^4) + 10*x^5*(1+x^2) + 22*x^6)/(1-x^4)^4. This is the preceding g.f. rewritten.
a(n) = binomial(n+1,3)*gcd(n+2,4)/4, n >= 0. From the g.f., see a comment above on A107711. (End)
a(n) = (n*(n-1)*((n+1)*(4+2*(-1)^n + (1+(-1)^n)*(-1)^((2*n+3+(-1)^n)/4))))/48. - Luce ETIENNE, Jan 01 2015
Sum_{n>=2} 1/a(n) = 12 - 27*log(2)/2. - Amiram Eldar, Aug 12 2022

A106610 Numerator of n/(n+9).

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 2, 7, 8, 1, 10, 11, 4, 13, 14, 5, 16, 17, 2, 19, 20, 7, 22, 23, 8, 25, 26, 3, 28, 29, 10, 31, 32, 11, 34, 35, 4, 37, 38, 13, 40, 41, 14, 43, 44, 5, 46, 47, 16, 49, 50, 17, 52, 53, 6, 55, 56, 19, 58, 59, 20, 61, 62, 7, 64, 65, 22, 67, 68, 23, 70, 71, 8, 73, 74, 25, 76, 77
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

Apart from 0, also numerator of Sum_{i=1..n} (1/((i+2)*(i+3))) = n/(3n+9). - Bruno Berselli, Nov 07 2012
In addition to being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019

Examples

			For n = 12, n/(n+9) = 12/21 = 4/7. So, a(12) = 4. - _Indranil Ghosh_, Jan 31 2017
From _Peter Bala_, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - (2*3)*G(x^3) - (2*9)*G(x^9) , where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (2/3)*H(x^3) - (2/9)*H(x^9), where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (2/3^2)*L(x^3) - (2/9^2)*L(x^9), where L(x) = Log(1/(1 - x)).
Sum_{n >= 1} (1/a(n))*x^n = L(x) + (2/3)*L(x^3) + (2/3)*L(x^9). (End)
		

References

  • Raffaello Giusti, editore, Supplemento al Periodico di Matematica (Livorno), Jul 1902, p. 138 (Problem 421, case k=3).

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109050(n)/9.
Dirichlet g.f. zeta(s-1)*(1-2/3^s-2/9^s).
Multiplicative with a(3^e) = 3^max(0,e-2), a(p^e) = p^e if p<>3. (End)
a(n) = 2*a(n-9) - a(n-18). - G. C. Greubel, Feb 19 2019
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,9), where gcd(n,9) = [1, 1, 3, 1, 1, 3, 1, 1, 9, ...] is a periodic sequence of period 9: a(n) is thus quasi_polynomial in n.
O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - 2*F(x^3) - 2*F(x^9), where F(x) = x/(1 - x)^2.
More generally, for m >= 1, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 3^m)*( F(m,x^3) + F(m,x^9) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse to the o.g.f. for the sequence produces generating functions for the sequences n^m*a(n), m in Z. Some examples are given below. (End)
Sum_{k=1..n} a(k) ~ (61/162) * n^2. - Amiram Eldar, Nov 25 2022

A106618 a(n) = numerator of n/(n+17).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 2, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 3, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 4, 69, 70, 71, 72, 73, 74
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

a(n) <> n iff n = 17 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

Dirichlet g.f.: zeta(s-1)*(1 - 16/17^s). - R. J. Mathar, Apr 18 2011
a(n) = 2*a(n-17) - a(n-34). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(17^e) = 17^(e-1), and a(p^e) = p^e if p != 17.
Sum_{k=1..n} a(k) ~ (273/578) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 33*log(2)/17. - Amiram Eldar, Sep 08 2023
Previous Showing 11-20 of 26 results. Next