cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A109053 a(n) = lcm(n,12).

Original entry on oeis.org

0, 12, 12, 12, 12, 60, 12, 84, 24, 36, 60, 132, 12, 156, 84, 60, 48, 204, 36, 228, 60, 84, 132, 276, 24, 300, 156, 108, 84, 348, 60, 372, 96, 132, 204, 420, 36, 444, 228, 156, 120, 492, 84, 516, 132, 180, 276, 564, 48, 588, 300, 204, 156, 636, 108, 660, 168
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Crossrefs

Programs

  • GAP
    List([0..60],n->Lcm(n,12)); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    [LCM(n, 12): n in [0..60]]; // G. C. Greubel, Mar 06 2019
  • Mathematica
    Array[LCM[#,12]&,60,0] (* Harvey P. Dale, Mar 26 2015 *)
  • PARI
    concat(0, Vec(12*x*(1 + x + x^2 + x^3 + 5*x^4 + x^5 + 7*x^6 + 2*x^7 + 3*x^8 + 5*x^9 + 11*x^10 + x^11 + 11*x^12 + 5*x^13 + 3*x^14 + 2*x^15 + 7*x^16 + x^17 + 5*x^18 + x^19 + x^20 + x^21 + x^22) / (1 - 2*x^12 + x^24) + O(x^40))) \\ Colin Barker, Mar 04 2019
    
  • PARI
    for(n=0,60, print1(lcm(n,12), ", ")) \\ G. C. Greubel, Mar 06 2019
    
  • Sage
    [lcm(n,12) for n in range(0,57)] # Zerinvary Lajos, Jun 09 2009
    

Formula

a(n) = n*12/gcd(n, 12).
a(n) = 12*A051724(n). - R. J. Mathar, Feb 12 2019
From Colin Barker, Mar 04 2019: (Start)
G.f.: 12*x*(1 + x + x^2 + x^3 + 5*x^4 + x^5 + 7*x^6 + 2*x^7 + 3*x^8 + 5*x^9 + 11*x^10 + x^11 + 11*x^12 + 5*x^13 + 3*x^14 + 2*x^15 + 7*x^16 + x^17 + 5*x^18 + x^19 + x^20 + x^21 + x^22) / (1 - 2*x^12 + x^24).
a(n) = 2*a(n-12) - a(n-24) for n>23.
(End)
Sum_{k=1..n} a(k) ~ (77/24) * n^2. - Amiram Eldar, Nov 26 2022

A146306 a(n) = numerator of (n-6)/(2n).

Original entry on oeis.org

-5, -1, -1, -1, -1, 0, 1, 1, 1, 1, 5, 1, 7, 2, 3, 5, 11, 1, 13, 7, 5, 4, 17, 3, 19, 5, 7, 11, 23, 2, 25, 13, 9, 7, 29, 5, 31, 8, 11, 17, 35, 3, 37, 19, 13, 10, 41, 7, 43, 11, 15, 23, 47, 4, 49, 25, 17, 13, 53, 9, 55, 14, 19, 29, 59, 5, 61, 31, 21, 16, 65, 11, 67, 17, 23, 35, 71, 6, 73, 37
Offset: 1

Views

Author

Artur Jasinski, Oct 29 2008

Keywords

Comments

For denominators see A146307.
General formula:
2*cos(2*Pi/n) = Hypergeometric2F1((n-6)/(2n), (n+6)/(2n), 1/2, 3/4) =
Hypergeometric2F1(a(n)/A146307(n), a(n+12)/A146307(n), 1/2, 3/4).
2*cos(2*Pi/n) is root of polynomial of degree = EulerPhi(n)/2 = A000010(n)/2 = A023022(n).
Records in this sequence are congruent to 1 or 5 mod 6 (see A007310).
First occurrence n in this sequence see A146308.

Examples

			Fractions begin with -5/2, -1, -1/2, -1/4, -1/10, 0, 1/14, 1/8, 1/6, 1/5, 5/22, 1/4, ...
		

Crossrefs

Cf. A000010, A007310, A023022, A051724, A146307 (denominators), A146308.

Programs

  • Mathematica
    Table[Numerator[(n - 6)/(2 n)], {n, 1, 100}]

Formula

a(n+5) = A051724(n).
Sum_{k=1..n} a(k) ~ (77/288) * n^2. - Amiram Eldar, Apr 04 2024
From Chai Wah Wu, May 08 2025: (Start)
a(n) = 2*a(n-12) - a(n-24) for n > 24.
G.f.: x*(x^23 + 7*x^22 + 2*x^21 + 3*x^20 + 5*x^19 + 11*x^18 + x^17 + 13*x^16 + 7*x^15 + 5*x^14 + 4*x^13 + 17*x^12 + x^11 + 5*x^10 + x^9 + x^8 + x^7 + x^6 - x^4 - x^3 - x^2 - x - 5)/(x^24 - 2*x^12 + 1). (End)

A106616 Numerator of n/(n+15).

Original entry on oeis.org

0, 1, 2, 1, 4, 1, 2, 7, 8, 3, 2, 11, 4, 13, 14, 1, 16, 17, 6, 19, 4, 7, 22, 23, 8, 5, 26, 9, 28, 29, 2, 31, 32, 11, 34, 7, 12, 37, 38, 13, 8, 41, 14, 43, 44, 3, 46, 47, 16, 49, 10, 17, 52, 53, 18, 11, 56, 19, 58, 59, 4, 61, 62, 21, 64, 13, 22, 67, 68, 23, 14, 71, 24, 73, 74, 5, 76, 77, 26
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

Multiplicative and also a strong divisibility sequence: gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Feb 24 2019

Crossrefs

Cf. Other sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

Dirichlet g.f.: zeta(s-1)*(1-4/5^s-2/3^s+8/15^s). - R. J. Mathar, Apr 18 2011
a(n) = gcd((n-2)*(n-1)*n*(n+1)*(n+2)/15, n) for n>=1. - Lechoslaw Ratajczak, Feb 19 2017
From Peter Bala, Feb 24 2019: (Start)
a(n) = n/gcd(n,15), a quasi-polynomial in n since gcd(n,15) is a purely periodic sequence of period 15.
O.g.f.: F(x) - 2*F(x^3) - 4*F(x^5) + 8*F(x^15), where F(x) = x/(1 - x)^2.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = Sum_{d divides 15} (phi(d)/d) * log(1/(1 - x^d)) = log(1/(1 - x)) + (2/3)*log(1/(1 - x^3)) + (4/5)*log(1/(1 - x^5)) + (8/15)*log(1/(1 - x^15)), where phi(n) denotes the Euler totient function A000010. (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(3^e) = 3^max(0,e-1), a(5^e) = 5^max(0,e-1), and a(p^e) = p^e otherwise.
Sum_{k=1..n} a(k) ~ (49/150) * n^2. (End)

A146309 a(n) = indices where primes occurred in A146306.

Original entry on oeis.org

1, 3, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 58, 62, 66, 74, 78, 82, 86, 94, 102, 106, 114, 118, 122, 134, 138, 142, 146, 158, 166, 174, 178, 186, 194, 202, 206, 214, 218, 222, 226, 246, 254, 258, 262, 274, 278, 282, 298, 302, 314, 318, 326, 334, 346, 354, 358
Offset: 0

Views

Author

Artur Jasinski, Oct 29 2008

Keywords

Comments

General formula (*Artur Jasinski*):
2 Cos[2*Pi/n] = Hypergeometric2F1[(n-6)/(2n),(n+6)/(2n),1/2,3/4] =
Hypergeometric2F1[A146306(n)/A146307(n),A146306(n+12)/A146307(n),1/2,3/4].
2 Cos[2*Pi/n] is root of polynomial of degree = EulerPhi[n]/2 = A000010(n)/2 = A023022(n).

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = Denominator[(n - 6)/(2 n)]; If[PrimeQ[k], AppendTo[aa, n]], {n, 1, 1000}]; aa (*Artur Jasinski*)

A367824 Array read by ascending antidiagonals: A(n, k) is the numerator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.

Original entry on oeis.org

1, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 0, -1, -1, 1, 3, 1, -1, -3, -1, 1, 2, 1, 0, -1, -2, -1, 1, 5, 3, 1, -1, -3, -5, -1, 1, 3, 1, 1, 0, -1, -1, -3, -1, 1, 7, 5, 1, 1, -1, -1, -5, -7, -1, 1, 4, 3, 2, 1, 0, -1, -2, -3, -4, -1, 1, 0, 7, 5, 3, 1, -1, -3, -5, -7, -9, -1
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2023

Keywords

Comments

This array generalizes A367727.

Examples

			The array of the fractions begins:
  1,  -1,   -1,   -1,   -1,   -1,    -1,    -1, ...
  1,   0, -1/3, -1/2, -3/5, -2/3,  -5/7,  -3/4, ...
  1, 1/3,    0, -1/5, -1/3, -3/7,  -1/2,  -5/9, ...
  1, 1/2,  1/5,    0, -1/7, -1/4,  -1/3,  -2/5, ...
  1, 3/5,  1/3,  1/7,    0, -1/9,  -1/5, -3/11, ...
  1, 2/3,  3/7,  1/4,  1/9,    0, -1/11,  -1/6, ...
  1, 5/7,  1/2,  1/3,  1/5, 1/11,     0, -1/13, ...
  1, 3/4,  5/9,  2/5, 3/11,  1/6,  1/13,     0, ...
  ...
The array of the numerators begins:
  1, -1, -1, -1, -1, -1, -1, -1, ...
  1,  0, -1, -1, -3, -2, -5, -3, ...
  1,  1,  0, -1, -1, -3, -1, -5, ...
  1,  1,  1,  0, -1, -1, -1, -2, ...
  1,  3,  1,  1,  0, -1, -1, -3, ...
  1,  2,  3,  1,  1,  0, -1, -1, ...
  1,  5,  1,  1,  1,  1,  0, -1, ...
  1,  3,  5,  2,  3,  1,  1,  0, ...
  ...
		

Crossrefs

Cf. A367825 (denominator), A367826 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=1; A[n_,k_]:=Numerator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

A(1, n) = -A026741(n-1) for n > 0.
A(2, n) = -A060819(n-2) for n > 2.
A(3, n) = -A060789(n-3) for n > 3.
A(4, n) = -A106609(n-4) for n > 3.
A(5, n) = -A106611(n-5) for n > 4.
A(6, n) = -A051724(n-6) for n > 5.
A(7, n) = -A106615(n-7) for n > 6.
A(8, n) = -A106617(n-8) = A231190(n) for n > 7.
A(9, n) = -A106619(n-9) for n > 8.
A(10, n) = -A106612(n-10) for n > 9.

A367825 Array read by ascending antidiagonals: A(n, k) is the denominator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 1, 2, 1, 1, 5, 5, 5, 5, 1, 1, 3, 3, 1, 3, 3, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 4, 2, 4, 1, 4, 2, 4, 1, 1, 9, 9, 3, 9, 9, 3, 9, 9, 1, 10, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 4, 6, 12, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2023

Keywords

Comments

This array generalizes A367728.

Examples

			The array of the fractions begins:
  1,  -1,   -1,   -1,   -1,   -1,    -1,    -1, ...
  1,   0, -1/3, -1/2, -3/5, -2/3,  -5/7,  -3/4, ...
  1, 1/3,    0, -1/5, -1/3, -3/7,  -1/2,  -5/9, ...
  1, 1/2,  1/5,    0, -1/7, -1/4,  -1/3,  -2/5, ...
  1, 3/5,  1/3,  1/7,    0, -1/9,  -1/5, -3/11, ...
  1, 2/3,  3/7,  1/4,  1/9,    0, -1/11,  -1/6, ...
  1, 5/7,  1/2,  1/3,  1/5, 1/11,     0, -1/13, ...
  1, 3/4,  5/9,  2/5, 3/11,  1/6,  1/13,     0, ...
  ...
The array of the denominators begins:
  1, 1, 1, 1,  1,  1,  1,  1, ...
  1, 1, 3, 2,  5,  3,  7,  4, ...
  1, 3, 1, 5,  3,  7,  2,  9, ...
  1, 2, 5, 1,  7,  4,  3,  5, ...
  1, 5, 3, 7,  1,  9,  5, 11, ...
  1, 3, 7, 4,  9,  1, 11,  6, ...
  1, 7, 2, 3,  5, 11,  1, 13, ...
  1, 4, 9, 5, 11,  6, 13,  1, ...
  ...
		

Crossrefs

Cf. A367824 (numerator), A367827 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=1; A[n_,k_]:=Denominator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k,k],{n,0,12},{k,0,n}]//Flatten

Formula

A(1, n) = A026741(n+1).
A(2, n) = A060819(n+2).
A(3, n) = A060789(n+3).
A(4, n) = A106609(n+4).
A(5, n) = A106611(n+5).
A(6, n) = A051724(n+6).
A(7, n) = A106615(n+7).
A(8, n) = A106617(n+8) = A231190(n+16).
A(9, n) = A106619(n+9).
A(10, n) = A106612(n+10).
Previous Showing 21-26 of 26 results.