cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 76 results. Next

A171386 The characteristic function of 2 and 3: 1 if n is prime such that either n-1 or n+1 is prime, else 0.

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 07 2009

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + a(n) = A052268(n).

Crossrefs

Programs

Formula

a(n) = A130130(n) - A130130(n-1), for n>0.

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010

A021085 Decimal expansion of 1/81.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9
Offset: 0

Views

Author

Keywords

Comments

The decimal expansion of Sum_{n>=1} floor(n * tanh(Pi))/10^n is the same as that of 1/81 for the first 268 decimal places [Borwein et al.]
Sqrt(999999999999999999) = 9*sqrt(12345679012345679). - Ryohei Miyadera, Ken Hirotomi, Hiroyuki Ozaki and Atushi Tanaka, Jan 16 2006

References

  • J. Borwein, D. Bailey and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, Peters, Boston, 2004. See Sect. 1.4.

Crossrefs

Cf. A052268.

Programs

  • Mathematica
    Table[Mod[n, 9], {n, 0, 120}] /. 8 -> 9 (* or *)
    PadLeft[First@ #, Abs@ Last@ # + Length@ First@ #] &@ RealDigits[N[1/81, 120]] (* Michael De Vlieger, Jun 21 2016 *)
    PadRight[{},120,{0,1,2,3,4,5,6,7,9}](* Harvey P. Dale, Apr 07 2019 *)

Formula

Equals Sum_{k >= 1} (1/2^k)*(1/5^k)*k. - Eric Desbiaux, Mar 11 2009
G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 9*x^7)/(1 - x^9). - Ilya Gutkovskiy, Jun 21 2016
From Stefano Spezia, Jun 03 2021: (Start)
a(n) = a(n-9) for n > 8.
Equals (1/10)*Sum_{n>0} 1/A052268(n). (End)

A089186 Decreases from 9 * 10^k down to 1, restarting at 9 * 10^(k+1).

Original entry on oeis.org

9, 8, 7, 6, 5, 4, 3, 2, 1, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28
Offset: 1

Views

Author

Artemario Tadeu Medeiros da Silva (artemario(AT)uol.com.br), Dec 07 2003

Keywords

Comments

Points of local maxima: 9 * 10^k.
a(n) is the 10's complement of n. - Robert Israel, Jul 03 2024

Crossrefs

Cf. A052268, A178914 (essentially the same).

Programs

Formula

a(n) = 10^(floor(log_10(n)) + 1) - n.

A333402 Numbers m such that the largest digit in the decimal expansion of 1/m is 1.

Original entry on oeis.org

1, 9, 10, 90, 99, 100, 900, 909, 990, 999, 1000, 9000, 9009, 9090, 9900, 9990, 9999, 10000, 90000, 90009, 90090, 90900, 90909, 99000, 99900, 99990, 99999, 100000, 900000, 900009, 900090, 900900, 909000, 909090, 990000, 990099, 999000, 999900, 999990, 999999, 1000000
Offset: 1

Views

Author

Bernard Schott, Mar 19 2020

Keywords

Comments

If m is a term, 10*m is also a term.
If m is a term then m has only digits {1}, {9}, {1,0} or {9,0} in its decimal representation, but this is not sufficient to be a term (see examples).
Some subsequences below (not exhaustive, see crossrefs):
m = 10^k, k >= 0, hence m is in A011557 = {1, 10, 100, 1000, 10000, ...};
m = 9*10^k, k >= 0, hence m is in A052268 = {9, 90, 900, 9000, 90000, ...};
m = 10^k-1, k >= 1, hence m is in A002283 = {9, 99, 999, 9999, 99999, ...};
m = 9*(10^k+1), k >= 1, hence m is in 9*A000533 = {99, 909, 9009, 90009, ...};
m = 9+100*(100^k-1)/11, k >= 0, hence m is in 9*A094028 = {9, 909, 90909, 9090909, ...}.

Examples

			As 1/101 = 0.009900990099..., 101 is not a term.
As 1/909 = 0.001100110011..., 909 is a term.
As 1/9099 = 0.000109902187..., 9099 is not a term.
As 1/9999 = 0.000100010001..., 9999 is also a term.
		

Crossrefs

Cf. A333236, A333237 (similar, with 9).
Subsequences: A002283, A011557, A052268.
Subsequences: 9*A000533, 9*A094028, 9*A135577, 9*A261544, 9*A330135.

Programs

  • Mathematica
    Select[Range[10^4], Max @ RealDigits[1/#][[1]] == 1 &] (* Amiram Eldar, Mar 19 2020 *)
  • Python
    from itertools import count, islice
    def A333402_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            k = 1
            while k <= m:
                k *= 10
            rset = {0}
            while True:
                k, r = divmod(k, m)
                if max(str(k)) > '1':
                    break
                else:
                    if r in rset:
                        yield m
                        break
                rset.add(r)
                k = r
                while k <= m:
                    k *= 10
    A333402_list = list(islice(A333402_gen(),30)) # Chai Wah Wu, Feb 17 2022

Formula

A333236(a(n))= 1.

Extensions

More terms from Jinyuan Wang, Mar 19 2020

A049415 Number of squares (of positive integers) with n digits.

Original entry on oeis.org

3, 6, 22, 68, 217, 683, 2163, 6837, 21623, 68377, 216228, 683772, 2162278, 6837722, 21622777, 68377223, 216227767, 683772233, 2162277661, 6837722339, 21622776602, 68377223398, 216227766017, 683772233983, 2162277660169
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

a(n) + A180426(n) + A180429(n) + A180347(n) = A052268(n).
Lim_{n->infinity} a(2n)/10^n = 1 - 1/sqrt(10);
lim_{n->infinity} a(2n-1)/10^n = 1/sqrt(10) - 1/10. - Robert G. Wilson v, Aug 29 2012

Examples

			22 squares (100=10^2, 121=11^2, ...., 961=31^2) have 3 digits, hence a(3)=22.
		

Crossrefs

A049415(n) = A017936(n+1) - A017936(n) = A049416(n+1) - A049416(n).
Cf. A062940.

Programs

  • Magma
    [Ceiling(Sqrt(10^n))-Ceiling(Sqrt(10^(n-1))) : n in [1..30]]; // Vincenzo Librandi, Oct 01 2011
  • Mathematica
    f[n_] := Ceiling[Sqrt[10^n - 1]] - Ceiling[Sqrt[10^(n - 1)]]; f[1] = 3; Array[f, 24] (* Robert G. Wilson v, Aug 29 2012 *)

Formula

a(n) = ceiling(sqrt(10^n)) - ceiling(sqrt(10^(n-1))).
From Jon E. Schoenfield, Nov 30 2019: (Start)
a(2n) = floor(10^n * (1 - 1/sqrt(10))), so each even-indexed term a(2n) is given by the first n digits (after the decimal point) of 1 - 1/sqrt(10) = 0.68377223398316...;
a(2n-1) = ceiling(10^n * (1/sqrt(10) - 1/10)), so each odd-indexed term a(2n-1) is given by the first n digits (after the decimal point) of 1/sqrt(10) - 1/10 = 0.21622776601683..., plus 1. (End)

Extensions

More terms from Dean Hickerson, Jul 10 2001

A100062 Denominator of the probability that an integer n occurs in the cumulative sums of the decimal digits of a random real number between 0 and 1.

Original entry on oeis.org

9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 387420489, 3486784401, 31381059609, 282429536481, 2541865828329, 22876792454961, 205891132094649, 1853020188851841, 16677181699666569, 150094635296999121
Offset: 1

Views

Author

Eric W. Weisstein, Nov 01 2004

Keywords

Comments

Essentially the same as A001019 = powers of 9.
Also number of n-digit positive integers with no identical adjacent digits. Hence the numerator (with A052268 as denominator) of the probability that an n-digit positive integer has this property (e.g., 9/9, 81/90, 729/900, ..., where A100062(n)/A052268(n) reduces to A001019(n-1)/A011557(n-1)). - Rick L. Shepherd, Jun 08 2008

Examples

			1/9, 10/81, 100/729, 1000/6561, 10000/59049, ...
		

Crossrefs

Programs

Formula

a(n) = 9^n. - Max Alekseyev, Mar 03 2007
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 9*a(n-1), n>1; a(1)=9.
G.f.: 9x/(1-9x). (End)
a(n) = A001019(n) for n>0. - Wesley Ivan Hurt, Apr 18 2016

Extensions

More terms from Rick L. Shepherd, Jun 08 2008

A181376 Total number of n-digit numbers requiring 2 positive cubes in their representation as a sum of cubes.

Original entry on oeis.org

2, 7, 32, 161, 736, 3416, 15976, 74295, 345334, 1605089, 7455698, 34623338, 160759047, 746318897, 3464508951, 16081935250, 74648713406
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + a(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).

Examples

			a(1) = 2 from 1+1=2, 1+8=9.
a(2) = 7 from 8+8=16, 1+27=28, 35, 54, 65, 72, 91.
		

Crossrefs

Cf. A003325.

Programs

  • Mathematica
    Table[Length[c = Table[j^3, {j, (10^n - 1)^(1/3)}];
      Select[Union[Flatten[Outer[Plus, c, c]]],
    IntervalMemberQ[Interval[{10^(n - 1), 10^n - 1}], #] &]], {n, 10}] (* Robert Price, Apr 18 2019 *)
  • PARI
    a(n)=my(N=10^n, Nn=N/10, v=List(), x3, t); sum(x=sqrtnint(Nn\2,3), sqrtnint(N-1, 3), x3=x^3; sum(y=1, min(sqrtnint(N-x3, 3), x), t=x3+y^3; t>=Nn && !ispower(t, 3) && listput(v, t))); #vecsort(v, , 8) \\ Charles R Greathouse IV, Oct 16 2013

Formula

a(n) = A181375(n)-A181375(n-1).

Extensions

a(6)-a(11) from Charles R Greathouse IV, Oct 16 2013
a(12) from Lars Blomberg, Jan 15 2014
a(13)-a(17) from Hiroaki Yamanouchi, Jul 13 2014

A181378 Total number of n-digit numbers requiring 3 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 14, 107, 1006, 9550, 92743, 913905, 9060358, 90216532
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + a(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n)

Crossrefs

Formula

a(n) = A181377(n)-A181377(n-1)

Extensions

a(5)-a(9) from Lars Blomberg, Jan 15 2014

A181380 Total number of n-digit numbers requiring 4 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 17, 224, 3101, 43340, 558806, 6615757, 73663693, 784419159
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + a(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).

Crossrefs

Formula

a(n) = A181379(n) - A181379(n-1).

Extensions

a(5)-a(9) from Lars Blomberg, Jan 15 2014

A181384 Total number of n-digit numbers requiring 5 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 20, 272, 3549, 34234, 244503, 1454243, 7201405, 25018440
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + a(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n)

Crossrefs

Formula

a(n) = A181381(n)-A181381(n-1)

Extensions

a(5)-a(9) from Lars Blomberg, Jan 15 2014
Previous Showing 21-30 of 76 results. Next