cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A052720 Expansion of e.g.f.: (1 - 4*x + 3*x^2)*(1 - 2*x - sqrt(1-4*x))/2 - x^2 + 2*x^3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 30240, 1088640, 39916800, 1556755200, 65383718400, 2964061900800, 144815595724800, 7602818775552000, 427447366714368000, 25646842002862080000, 1636734826000834560000, 110752389892723138560000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{B=Union(Z,C),C=Prod(B,B),S=Prod(C,C,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[If[n<6, 0, 6*(n-2)!*Binomial[n-4, 2]*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
  • SageMath
    def A052720(n):
        if (n<6): return 0
        else: return 6*factorial(n-2)*binomial(n-4,2)*catalan_number(n-3)
    [A052720(n) for n in (0..30)] # G. C. Greubel, May 28 2022

Formula

D-finite with recurrence: a(1)=0; a(2)=0; a(4)=0; a(3)=0; a(5)=0; a(6)=720; a(n+3) = (10+8*n)*a(n+2) + (22-27*n-19*n^2)*a(n+1) - (60-66*n+6*n^2+12*n^3)*a(n).
a(n) = n!*A003517(n-4). - R. J. Mathar, Oct 18 2013
From G. C. Greubel, May 28 2022: (Start)
G.f.: 6!*x^6*Hypergeometric2F0([3, 7/2], [], 4*x).
E.g.f.: (1/2)*(1 - 6*x + 9*x^2 - 2*x^3 - (1 - 4*x + 3*x^2)*sqrt(1-4*x)). (End)

A052721 Expansion of e.g.f. x*(1-2*x)*(1 - 2*x - sqrt(1-4*x))/2 - x^3.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 2880, 70560, 1935360, 59875200, 2075673600, 79913433600, 3387499315200, 156883562035200, 7884404656128000, 427447366714368000, 24869664972472320000, 1545805113445232640000, 102232975285590589440000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[If[n<5, 0, 2*n*(n-2)!*(n-4)*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
  • SageMath
    def A052721(n):
        if (n<5): return 0
        else: return 2*n*factorial(n-2)*(n-4)*catalan_number(n-3)
    [A052721(n) for n in (0..30)] # G. C. Greubel, May 28 2022

Formula

D-finite with recurrence: a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=120, a(6)=2880, (n+2)*a(n+2) = (6*n^2 + 8*n - 8)*a(n+1) + (40 + 44*n = 4*n^2 - 8*n^3)*a(n).
a(n) = 2*Pi^(-1/2)*4^(n-3)*Gamma(n-5/2)*n*(n-4) for n>3. - Mark van Hoeij, Oct 30 2011
a(n) = n!*A002057(n-5). - R. J. Mathar, Oct 18 2013
From G. C. Greubel, May 28 2022: (Start)
G.f.: 4!*x*(d/dx)( x^5 * Hypergeometric2F0([2, 5/2], [], 4*x) ).
E.g.f.: (x/2)*(1 - 4*x + 2*x^2 - (1-2*x)*sqrt(1-4*x)). (End)

A052722 Expansion of e.g.f. (1 - 2*x - sqrt(1-4*x))^2 * (1 - sqrt(1-4*x))/8.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 3600, 100800, 3024000, 99792000, 3632428800, 145297152000, 6351561216000, 301699157760000, 15487223431680000, 854894733428736000, 50516506975334400000, 3182539939446067200000, 212985365178313728000000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[((1-2x-Sqrt[1-4x])^2 (1-Sqrt[1-4x]))/8,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 30 2021 *)
    Table[If[n<5, 0, 10*(n-2)!*Binomial[n-3,2]*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
  • SageMath
    def A052722(n):
        if (n<5): return 0
        else: return 10*factorial(n-2)*binomial(n-3,2)*catalan_number(n-3)
    [A052722(n) for n in (0..30)] # G. C. Greubel, May 28 2022

Formula

D-finite with recurrence: a(0) = a(1) = a(2) = a(3) = a(4) = 0, a(5)=120, a(n+3) = (9+7*n)*a(n+2) + (14 - 19*n - 13*n^2)*a(n+1) - (20 + 22*n - 2*n^2 - 4*n^3)*a(n).
a(n) = n!*A000344(n-3). - R. J. Mathar, Oct 18 2013
From G. C. Greubel, May 28 2022: (Start)
G.f.: 5!*x^5*hypergeometric2F0([5/2, 3], [], 4*x).
E.g.f.: (1/2)*(1 - 5*x + 5*x^2 - (1 - 3*x + x^2)*sqrt(1-4*x)). (End)

A052734 a(n) = 4^(n-1) * n! * Catalan(n-1) for n > 0, with a(0) = 0.

Original entry on oeis.org

0, 1, 8, 192, 7680, 430080, 30965760, 2724986880, 283398635520, 34007836262400, 4625065731686400, 703009991216332800, 118105678524343910400, 21731444848479279513600, 4346288969695855902720000, 938798417454304874987520000, 217801232849398730997104640000, 54014705746650885287281950720000, 14259882317115833715842434990080000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

For n>0, the number of fully-parenthesized expressions that you can form with n operands and 4 types of binary operators. - Yogy Namara (yogy.namara(AT)gmail.com), Mar 07 2010
a(n+1) is the number of square roots of any permutation in S_{16*n} whose disjoint cycle decomposition consists of 2*n cycles of length 8. - Luis Manuel Rivera Martínez, Feb 26 2015

Examples

			Let's say the 4 types of binary operators are +, -, *, and /. Then, with 3 operands {a, b, c}, we can form expressions such as ((b+a)/c), (a-(c-b)), (c*(b+a)), etc. There are a(3)=192 such expressions. - Yogy Namara (yogy.namara(AT)gmail.com), Mar 07 2010
		

Crossrefs

Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or A144828) (m=2), A221954 (m=3), this sequence (m=4), A221953 (m=5), A221955 (m=6).
Equal to A000108 if all operands and all operators are indistinguishable.

Programs

  • Magma
    [0] cat [Catalan(n-1)*4^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
    
  • Maple
    spec := [S,{B=Prod(C,C),S=Union(B,Z),C=Union(B,S,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq((2*n)!/n! * 4^n, n = 0..10);
  • Mathematica
    Join[{0}, Table[CatalanNumber[n-1] 4^(n-1) n!, {n, 1, 20}]] (* Vincenzo Librandi, Mar 11 2013 *)
  • Sage
    [0]+[4^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021

Formula

E.g.f.: (1 - sqrt(1-16*x))/8.
Recurrence: a(1)=1, 8*(1 - 2*n)*a(n) + a(n+1) = 0.
a(n) = 16^n*Gamma(n+1/2)/sqrt(Pi).
a(0) = 0, a(1) = 1; a(n) = 4 * Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Jul 09 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 + e^(1/16)*sqrt(Pi)*erf(1/4)/4, where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - e^(-1/16)*sqrt(Pi)*erfi(1/4)/4, where erfi is the imaginary error function. (End)

Extensions

Entry revised by N. J. A. Sloane, Feb 04 2013 and Feb 06 2013

A221954 a(n) = 3^(n-1) * n! * Catalan(n-1).

Original entry on oeis.org

1, 6, 108, 3240, 136080, 7348320, 484989120, 37829151360, 3404623622400, 347271609484800, 39588963481267200, 4988209398639667200, 688372897012274073600, 103255934551841111040000, 16727461397398259988480000, 2910578283147297237995520000, 541367560665397286267166720000, 107190777011748662680899010560000, 22510063172467219162988792217600000
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2013

Keywords

Comments

a(n+1) is the number of square roots of any permutation in S_{12*n} whose disjoint cycle decomposition consists of 2*n cycles of length 6. - Luis Manuel Rivera Martínez, Feb 26 2015

Crossrefs

Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or A144828) (m=2), this sequence (m=3), A052734 (m=4), A221953 (m=5), A221955 (m=6).
Cf. A000108.

Programs

  • Magma
    [Catalan(n-1)*3^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
    
  • Maple
    A221954:= n-> (3^(n-1)*n!/(2*(2*n-1))*binomial(2*n,n); seq(A221954(n), n=1..30); # G. C. Greubel, Apr 02 2021
  • Mathematica
    Table[CatalanNumber[n-1] 3^(n-1) n!, {n, 20}] (* Vincenzo Librandi, Mar 11 2013 *)
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1-sqrt(1-12*x))/6)) \\ Michel Marcus, Mar 04 2015
    
  • Sage
    [3^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021

Formula

a(n) = 6*(2*n-3)*a(n-1) with a(1)=1. - Bruno Berselli, Mar 11 2013
E.g.f.: (1 - sqrt(1-12*x))/6. - Luis Manuel Rivera Martínez, Mar 04 2015
a(n) = 12^(n-1) * Gamma(n - 1/2) / sqrt(Pi). - Daniel Suteu, Jan 06 2017
a(1) = 1; a(n) = 3 * Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Jul 09 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 + e^(1/12)*sqrt(Pi)*erf(1/(2*sqrt(3)))/(2*sqrt(3)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - e^(-1/12)*sqrt(Pi)*erfi(1/(2*sqrt(3)))/(2*sqrt(3)), where erfi is the imaginary error function. (End)

A221953 a(n) = 5^(n-1) * n! * Catalan(n-1).

Original entry on oeis.org

1, 10, 300, 15000, 1050000, 94500000, 10395000000, 1351350000000, 202702500000000, 34459425000000000, 6547290750000000000, 1374931057500000000000, 316234143225000000000000, 79058535806250000000000000, 21345804667687500000000000000, 6190283353629375000000000000000, 1918987839625106250000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2013

Keywords

Comments

a(n+1) is the number of square roots of any permutation in S_{20*n} whose disjoint cycle decomposition consists of 2*n cycles of length 10. - Luis Manuel Rivera Martínez, Feb 26 2015

Crossrefs

Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or A144828) (m=2), A221954 (m=3), A052734 (m=4), this sequence (m=5), A221955 (m=6).
Cf. A000108.

Programs

  • Magma
    [Catalan(n-1)*5^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
    
  • Maple
    A221953:= n-> (5^(n-1)*n!/(2*(2*n-1))*binomial(2*n,n); seq(A221953(n), n=1..30); # G. C. Greubel, Apr 02 2021
  • Mathematica
    Table[CatalanNumber[n - 1]  5^(n-1)  n!, {n, 20}] (* Vincenzo Librandi, Mar 11 2013 *)
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1-sqrt(1-20*x))/10)) \\ Michel Marcus, Mar 04 2015
    
  • Sage
    [5^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021

Formula

a(n) = 10*(2*n-3)*a(n-1) with a(1)=1. - Bruno Berselli, Mar 11 2013
E.g.f.: (1 - sqrt(1-20*x))/10. - Luis Manuel Rivera Martínez, Mar 04 2015
a(1) = 1; a(n) = 5 * Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Jul 10 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 + e^(1/20)*sqrt(Pi)*erf(1/(2*sqrt(5)))/(2*sqrt(5)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - e^(-1/20)*sqrt(Pi)*erfi(1/(2*sqrt(5)))/(2*sqrt(5)), where erfi is the imaginary error function. (End)

A221955 a(n) = 6^(n-1) * n! * Catalan(n-1).

Original entry on oeis.org

1, 12, 432, 25920, 2177280, 235146240, 31039303680, 4842131374080, 871583647334400, 177803064056217600, 40539098604817612800, 10215852848414038425600, 2819575386162274605465600, 845872615848682381639680000, 274062727534973091651256320000, 95373829182170635894637199360000, 35479064455767476552805038161920000
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2013

Keywords

Comments

a(n+1) is the number of square roots of any permutation in S_{24*n} whose disjoint cycle decomposition consists of 2*n cycles of length 12. - Luis Manuel Rivera Martínez, Feb 28 2015

Crossrefs

Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or A144828) (m=2), A221954 (m=3), A052734 (m=4), A221953 (m=5), this sequence (m=6).
Cf. A000108.

Programs

  • Magma
    [Catalan(n-1)*6^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
    
  • Maple
    A221955:= n-> 3*6^(n-2)*n!*binomial(2*n,n)/(2*n-1); seq(A221955(n), n=1..30); # G. C. Greubel, Apr 02 2021
  • Mathematica
    Table[CatalanNumber[n-1] 6^(n-1) n!, {n, 20}] (* Vincenzo Librandi, Mar 11 2013 *)
    nxt[{n_,a_}]:={n+1,12a(2n-1)}; NestList[nxt,{1,1},20][[;;,2]] (* Harvey P. Dale, Sep 21 2024 *)
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1-sqrt(1-24*x))/12)) \\ Michel Marcus, Mar 04 2015
    
  • Sage
    [6^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021

Formula

a(n) = 12*(2*n-3)*a(n-1) with a(1)=1. - Bruno Berselli, Mar 11 2013
E.g.f.: (1-sqrt(1-24*x))/12. - Luis Manuel Rivera Martínez, Mar 04 2015
a(1) = 1; a(n) = 6 * Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Jul 10 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 + e^(1/24)*sqrt(Pi)*erf(1/(2*sqrt(6)))/(2*sqrt(6)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - e^(-1/24)*sqrt(Pi)*erfi(1/(2*sqrt(6)))/(2*sqrt(6)), where erfi is the imaginary error function. (End)

A174376 Triangle T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 8, 48, 8, 1, 1, 10, 80, 80, 10, 1, 1, 12, 120, 960, 120, 12, 1, 1, 14, 168, 1680, 1680, 168, 14, 1, 1, 16, 224, 2688, 26880, 2688, 224, 16, 1, 1, 18, 288, 4032, 48384, 48384, 4032, 288, 18, 1, 1, 20, 360, 5760, 80640, 967680, 80640, 5760, 360, 20, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 17 2010

Keywords

Comments

Row sums are: {1, 2, 6, 14, 66, 182, 1226, 3726, 32738, 105446, 1141242, ...}.

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  4,   1;
  1,  6,   6,    1;
  1,  8,  48,    8,     1;
  1, 10,  80,   80,    10,      1;
  1, 12, 120,  960,   120,     12,     1;
  1, 14, 168, 1680,  1680,    168,    14,    1;
  1, 16, 224, 2688, 26880,   2688,   224,   16,   1;
  1, 18, 288, 4032, 48384,  48384,  4032,  288,  18,  1;
  1, 20, 360, 5760, 80640, 967680, 80640, 5760, 360, 20,  1;
		

Crossrefs

Cf. A159623 (q=1), this sequence (q=2), A174377 (q=3), A174378 (q=4).
Cf. A052714.

Programs

  • Mathematica
    T[n_, k_, q_]:= If[Floor[n/2]>=k, n!*q^k/(n-k)!, n!*q^(n-k)/k!];
    Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten
  • Sage
    f=factorial
    def T(n,k,q): return f(n)*q^k/f(n-k) if ((n//2)>k-1) else f(n)*q^(n-k)/f(k)
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 28 2021

Formula

T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 2.
T(n, n-k) = T(n, k).
T(2*n, n) = A052714(n+1). - G. C. Greubel, Nov 28 2021

Extensions

Edited by G. C. Greubel, Nov 28 2021

A147626 Octo-factorial numbers (5).

Original entry on oeis.org

1, 6, 84, 1848, 55440, 2106720, 96909120, 5233092480, 324451733760, 22711621363200, 1771506466329600, 152349556104345600, 14320858273808486400, 1460727543928465612800, 160680029832131217408000, 18960243520191483654144000, 2388990683544126940422144000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (8*n-10)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
    
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,5,2*5!,8}];lst
    Table[8^(n-1)*Pochhammer[3/4, n-1], {n,40}] (* G. C. Greubel, Oct 21 2022 *)
  • SageMath
    [8^(n-1)*rising_factorial(3/4, n-1) for n in range(1,40)] # G. C. Greubel, Oct 21 2022

Formula

a(n+1) = Sum_{k=0..n} A132393(n,k)*6^k*8^(n-k). - Philippe Deléham, Nov 09 2008
a(n) = (-2)^n*Sum_{k=0..n} 4^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 2*x/G(0), where G(k) = 1 + 1/(1 - 2*x*(8*k+6)/(2*x*(8*k+6) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
From G. C. Greubel, Oct 21 2022: (Start)
a(n) = 8^n * Pochhammer(n, 3/4) = -2^(3*n-1) * Pochhammer(n, -1/4).
a(n) = (8*n - 10)*a(n-1). (End)
Sum_{n>=1} 1/a(n) = 1 + (e/8^2)^(1/8)*(Gamma(3/4) - Gamma(3/4, 1/8)). - Amiram Eldar, Dec 20 2022

A164961 Triangle read by rows: T[n,m] = quadruple factorials A001813(n) * binomials A007318(n,m).

Original entry on oeis.org

1, 2, 2, 12, 24, 12, 120, 360, 360, 120, 1680, 6720, 10080, 6720, 1680, 30240, 151200, 302400, 302400, 151200, 30240, 665280, 3991680, 9979200, 13305600, 9979200, 3991680, 665280, 17297280, 121080960, 363242880, 605404800, 605404800
Offset: 0

Views

Author

Tilman Neumann, Sep 02 2009

Keywords

Comments

Row sums give A052714. - Tilman Neumann, Sep 07 2009
Triangle T(n,k), read by rows, given by (2, 4, 6, 8, 10, 12, 14, ...) DELTA (2, 4, 6, 8, 10, 12, 14, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 07 2012

Examples

			Triangle begins:
  1
  2, 2
  12, 24, 12
  120, 360, 360, 120
  1680, 6720, 10080, 6720, 1680
		

Crossrefs

Cf. A001813, A007318, A052714 (row sums), A084938, A085881.

Formula

T(n,k) = A085881(n,k)*2^n. - Philippe Deléham, Jan 07 2012
Recurrence equation: T(n+1,k) = (4*n+2)*(T(n,k) + T(n,k-1)). - Peter Bala, Jul 15 2012
E.g.f.: 1/sqrt(1-4*x-4*x*y). - Peter Bala, Jul 15 2012
Previous Showing 11-20 of 21 results. Next