A052720
Expansion of e.g.f.: (1 - 4*x + 3*x^2)*(1 - 2*x - sqrt(1-4*x))/2 - x^2 + 2*x^3.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 720, 30240, 1088640, 39916800, 1556755200, 65383718400, 2964061900800, 144815595724800, 7602818775552000, 427447366714368000, 25646842002862080000, 1636734826000834560000, 110752389892723138560000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052712,
A052713,
A052714,
A052715,
A052716,
A052717,
A052718,
A052719,
A052721,
A052722,
A052723.
-
spec := [S,{B=Union(Z,C),C=Prod(B,B),S=Prod(C,C,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[If[n<6, 0, 6*(n-2)!*Binomial[n-4, 2]*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
-
def A052720(n):
if (n<6): return 0
else: return 6*factorial(n-2)*binomial(n-4,2)*catalan_number(n-3)
[A052720(n) for n in (0..30)] # G. C. Greubel, May 28 2022
A052721
Expansion of e.g.f. x*(1-2*x)*(1 - 2*x - sqrt(1-4*x))/2 - x^3.
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 2880, 70560, 1935360, 59875200, 2075673600, 79913433600, 3387499315200, 156883562035200, 7884404656128000, 427447366714368000, 24869664972472320000, 1545805113445232640000, 102232975285590589440000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052712,
A052713,
A052714,
A052715,
A052716,
A052717,
A052718,
A052719,
A052720,
A052722,
A052723.
-
spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[If[n<5, 0, 2*n*(n-2)!*(n-4)*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
-
def A052721(n):
if (n<5): return 0
else: return 2*n*factorial(n-2)*(n-4)*catalan_number(n-3)
[A052721(n) for n in (0..30)] # G. C. Greubel, May 28 2022
A052722
Expansion of e.g.f. (1 - 2*x - sqrt(1-4*x))^2 * (1 - sqrt(1-4*x))/8.
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 3600, 100800, 3024000, 99792000, 3632428800, 145297152000, 6351561216000, 301699157760000, 15487223431680000, 854894733428736000, 50516506975334400000, 3182539939446067200000, 212985365178313728000000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052712,
A052713,
A052714,
A052715,
A052716,
A052717,
A052718,
A052719,
A052720,
A052721,
A052723.
-
spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[((1-2x-Sqrt[1-4x])^2 (1-Sqrt[1-4x]))/8,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 30 2021 *)
Table[If[n<5, 0, 10*(n-2)!*Binomial[n-3,2]*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
-
def A052722(n):
if (n<5): return 0
else: return 10*factorial(n-2)*binomial(n-3,2)*catalan_number(n-3)
[A052722(n) for n in (0..30)] # G. C. Greubel, May 28 2022
A052734
a(n) = 4^(n-1) * n! * Catalan(n-1) for n > 0, with a(0) = 0.
Original entry on oeis.org
0, 1, 8, 192, 7680, 430080, 30965760, 2724986880, 283398635520, 34007836262400, 4625065731686400, 703009991216332800, 118105678524343910400, 21731444848479279513600, 4346288969695855902720000, 938798417454304874987520000, 217801232849398730997104640000, 54014705746650885287281950720000, 14259882317115833715842434990080000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Let's say the 4 types of binary operators are +, -, *, and /. Then, with 3 operands {a, b, c}, we can form expressions such as ((b+a)/c), (a-(c-b)), (c*(b+a)), etc. There are a(3)=192 such expressions. - Yogy Namara (yogy.namara(AT)gmail.com), Mar 07 2010
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 690.
- Jesús Leaños, Rutilo Moreno and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, arXiv:1005.1531 [math.CO], 2010-2011.
- Jesús Leaños, Rutilo Moreno and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, Australas. J. Combin., Vol. 52 (2012), pp. 41-54 (Theorem 1).
- W. van der Aalst, J. Buijs and B. van Dongen, Towards Improving the Representational Bias of Process Mining, 2012.
Equal to
A000108 if all operands and all operators are indistinguishable.
-
[0] cat [Catalan(n-1)*4^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
-
spec := [S,{B=Prod(C,C),S=Union(B,Z),C=Union(B,S,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
seq((2*n)!/n! * 4^n, n = 0..10);
-
Join[{0}, Table[CatalanNumber[n-1] 4^(n-1) n!, {n, 1, 20}]] (* Vincenzo Librandi, Mar 11 2013 *)
-
[0]+[4^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021
A221954
a(n) = 3^(n-1) * n! * Catalan(n-1).
Original entry on oeis.org
1, 6, 108, 3240, 136080, 7348320, 484989120, 37829151360, 3404623622400, 347271609484800, 39588963481267200, 4988209398639667200, 688372897012274073600, 103255934551841111040000, 16727461397398259988480000, 2910578283147297237995520000, 541367560665397286267166720000, 107190777011748662680899010560000, 22510063172467219162988792217600000
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- W. van der Aalst, J. Buijs and B. van Dongen, Towards Improving the Representational Bias of Process Mining, 2012.
- Jesús Leaños, Rutilo Moreno and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, arXiv:1005.1531 [math.CO], 2010-2011.
- Jesús Leaños, Rutilo Moreno and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, Australas. J. Combin., Vol. 52 (2012), pp. 41-54 (Theorem 1).
-
[Catalan(n-1)*3^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
-
A221954:= n-> (3^(n-1)*n!/(2*(2*n-1))*binomial(2*n,n); seq(A221954(n), n=1..30); # G. C. Greubel, Apr 02 2021
-
Table[CatalanNumber[n-1] 3^(n-1) n!, {n, 20}] (* Vincenzo Librandi, Mar 11 2013 *)
-
my(x='x+O('x^22)); Vec(serlaplace((1-sqrt(1-12*x))/6)) \\ Michel Marcus, Mar 04 2015
-
[3^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021
A221953
a(n) = 5^(n-1) * n! * Catalan(n-1).
Original entry on oeis.org
1, 10, 300, 15000, 1050000, 94500000, 10395000000, 1351350000000, 202702500000000, 34459425000000000, 6547290750000000000, 1374931057500000000000, 316234143225000000000000, 79058535806250000000000000, 21345804667687500000000000000, 6190283353629375000000000000000, 1918987839625106250000000000000000
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- W. van der Aalst, J. Buijs and B. van Dongen, Towards Improving the Representational Bias of Process Mining, 2012.
- Jesús Leaños, Rutilo Moreno and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, arXiv:1005.1531 [math.CO], 2010-2011.
- Jesús Leaños, Rutilo Moreno and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, Australas. J. Combin., Vol. 52 (2012), pp. 41-54 (Theorem 1).
-
[Catalan(n-1)*5^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
-
A221953:= n-> (5^(n-1)*n!/(2*(2*n-1))*binomial(2*n,n); seq(A221953(n), n=1..30); # G. C. Greubel, Apr 02 2021
-
Table[CatalanNumber[n - 1] 5^(n-1) n!, {n, 20}] (* Vincenzo Librandi, Mar 11 2013 *)
-
my(x='x+O('x^22)); Vec(serlaplace((1-sqrt(1-20*x))/10)) \\ Michel Marcus, Mar 04 2015
-
[5^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021
A221955
a(n) = 6^(n-1) * n! * Catalan(n-1).
Original entry on oeis.org
1, 12, 432, 25920, 2177280, 235146240, 31039303680, 4842131374080, 871583647334400, 177803064056217600, 40539098604817612800, 10215852848414038425600, 2819575386162274605465600, 845872615848682381639680000, 274062727534973091651256320000, 95373829182170635894637199360000, 35479064455767476552805038161920000
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- W. van der Aalst, J. Buijs and B. van Dongen, Towards Improving the Representational Bias of Process Mining, 2012.
- Jesús Leaños, Rutilo Moreno and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, Australas. J. Combin., Vol. 52 (2012), pp. 41-54 (Theorem 1).
-
[Catalan(n-1)*6^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
-
A221955:= n-> 3*6^(n-2)*n!*binomial(2*n,n)/(2*n-1); seq(A221955(n), n=1..30); # G. C. Greubel, Apr 02 2021
-
Table[CatalanNumber[n-1] 6^(n-1) n!, {n, 20}] (* Vincenzo Librandi, Mar 11 2013 *)
nxt[{n_,a_}]:={n+1,12a(2n-1)}; NestList[nxt,{1,1},20][[;;,2]] (* Harvey P. Dale, Sep 21 2024 *)
-
my(x='x+O('x^22)); Vec(serlaplace((1-sqrt(1-24*x))/12)) \\ Michel Marcus, Mar 04 2015
-
[6^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021
A174376
Triangle T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 8, 48, 8, 1, 1, 10, 80, 80, 10, 1, 1, 12, 120, 960, 120, 12, 1, 1, 14, 168, 1680, 1680, 168, 14, 1, 1, 16, 224, 2688, 26880, 2688, 224, 16, 1, 1, 18, 288, 4032, 48384, 48384, 4032, 288, 18, 1, 1, 20, 360, 5760, 80640, 967680, 80640, 5760, 360, 20, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 6, 6, 1;
1, 8, 48, 8, 1;
1, 10, 80, 80, 10, 1;
1, 12, 120, 960, 120, 12, 1;
1, 14, 168, 1680, 1680, 168, 14, 1;
1, 16, 224, 2688, 26880, 2688, 224, 16, 1;
1, 18, 288, 4032, 48384, 48384, 4032, 288, 18, 1;
1, 20, 360, 5760, 80640, 967680, 80640, 5760, 360, 20, 1;
-
T[n_, k_, q_]:= If[Floor[n/2]>=k, n!*q^k/(n-k)!, n!*q^(n-k)/k!];
Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten
-
f=factorial
def T(n,k,q): return f(n)*q^k/f(n-k) if ((n//2)>k-1) else f(n)*q^(n-k)/f(k)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 28 2021
A147626
Octo-factorial numbers (5).
Original entry on oeis.org
1, 6, 84, 1848, 55440, 2106720, 96909120, 5233092480, 324451733760, 22711621363200, 1771506466329600, 152349556104345600, 14320858273808486400, 1460727543928465612800, 160680029832131217408000, 18960243520191483654144000, 2388990683544126940422144000
Offset: 1
-
[n le 1 select 1 else (8*n-10)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,5,2*5!,8}];lst
Table[8^(n-1)*Pochhammer[3/4, n-1], {n,40}] (* G. C. Greubel, Oct 21 2022 *)
-
[8^(n-1)*rising_factorial(3/4, n-1) for n in range(1,40)] # G. C. Greubel, Oct 21 2022
A164961
Triangle read by rows: T[n,m] = quadruple factorials A001813(n) * binomials A007318(n,m).
Original entry on oeis.org
1, 2, 2, 12, 24, 12, 120, 360, 360, 120, 1680, 6720, 10080, 6720, 1680, 30240, 151200, 302400, 302400, 151200, 30240, 665280, 3991680, 9979200, 13305600, 9979200, 3991680, 665280, 17297280, 121080960, 363242880, 605404800, 605404800
Offset: 0
Triangle begins:
1
2, 2
12, 24, 12
120, 360, 360, 120
1680, 6720, 10080, 6720, 1680
Comments