cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001813 Quadruple factorial numbers: a(n) = (2n)!/n!.

Original entry on oeis.org

1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, 670442572800, 28158588057600, 1295295050649600, 64764752532480000, 3497296636753920000, 202843204931727360000, 12576278705767096320000, 830034394580628357120000, 58102407620643984998400000
Offset: 0

Views

Author

Keywords

Comments

Counts binary rooted trees (with out-degree <= 2), embedded in plane, with n labeled end nodes of degree 1. Unlabeled version gives Catalan numbers A000108.
Define a "downgrade" to be the permutation which places the items of a permutation in descending order. We are concerned with permutations that are identical to their downgrades. Only permutations of order 4n and 4n+1 can have this property; the number of permutations of length 4n having this property are equinumerous with those of length 4n+1. If a permutation p has this property then the reversal of this permutation also has it. a(n) = number of permutations of length 4n and 4n+1 that are identical to their downgrades. - Eugene McDonnell (eemcd(AT)mac.com), Oct 26 2003
Number of broadcast schemes in the complete graph on n+1 vertices, K_{n+1}. - Calin D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
Hankel transform is A137565. - Paul Barry, Nov 25 2009
The e.g.f. of 1/a(n) = n!/(2*n)! is (exp(sqrt(x)) + exp(-sqrt(x)) )/2. - Wolfdieter Lang, Jan 09 2012
From Tom Copeland, Nov 15 2014: (Start)
Aerated with intervening zeros (1,0,2,0,12,0,120,...) = a(n) (cf. A123023 and A001147), the e.g.f. is e^(t^2), so this is the base for the Appell sequence with e.g.f. e^(t^2) e^(x*t) = exp(P(.,x),t) (reverse A059344, cf. A099174, A066325 also). P(n,x) = (a. + x)^n with (a.)^n = a_n and comprise the umbral compositional inverses for e^(-t^2)e^(x*t) = exp(UP(.,x),t), i.e., UP(n,P(.,t)) = x^n = P(n,UP(.,t)), e.g., (P(.,t))^n = P(n,t).
Equals A000407*2 with leading 1 added. (End)
a(n) is also the number of square roots of any permutation in S_{4*n} whose disjoint cycle decomposition consists of 2*n transpositions. - Luis Manuel Rivera Martínez, Mar 04 2015
Self-convolution gives A076729. - Vladimir Reshetnikov, Oct 11 2016
For n > 1, it follows from the formula dated Aug 07 2013 that a(n) is a Zumkeller number (A083207). - Ivan N. Ianakiev, Feb 28 2017
For n divisible by 4, a(n/4) is the number of ways to place n points on an n X n grid with pairwise distinct abscissae, pairwise distinct ordinates, and 90-degree rotational symmetry. For n == 1 (mod 4), the number of ways is a((n-1)/4) because the center point can be considered "fixed". For 180-degree rotational symmetry see A006882, for mirror symmetry see A000085, A135401, and A297708. - Manfred Scheucher, Dec 29 2017

Examples

			The following permutations of order 8 and their reversals have this property:
  1 7 3 5 2 4 0 6
  1 7 4 2 5 3 0 6
  2 3 7 6 1 0 4 5
  2 4 7 1 6 0 3 5
  3 2 6 7 0 1 5 4
  3 5 1 7 0 6 2 4
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.6, Eq. 32.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • Eugene McDonnell, "Magic Squares and Permutations" APL Quote-Quad 7.3 (Fall, 1976)
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..20],n->Factorial(2*n)/Factorial(n)); # Muniru A Asiru, Nov 01 2018
    
  • Magma
    [Factorial(2*n)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 09 2018
    
  • Maple
    A001813 := n->(2*n)!/n!;
    A001813 := n -> mul(k, k = select(k-> k mod 4 = 2,[$1 .. 4*n])):
    seq(A001813(n), n=0..16);  # Peter Luschny, Jun 23 2011
  • Mathematica
    Table[(2n)!/n!, {n,0,20}] (* Harvey P. Dale, May 02 2011 *)
  • Maxima
    makelist(binomial(n+n, n)*n!,n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=binomial(n+n,n)*n! \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    first(n) = x='x+O('x^n); Vec(serlaplace((1 - 4*x)^(-1/2))) \\ Iain Fox, Jan 01 2018 (corrected by Iain Fox, Jan 11 2018)
    
  • Python
    from math import factorial
    def A001813(n): return factorial(n<<1)//factorial(n) # Chai Wah Wu, Feb 14 2023
  • Sage
    [binomial(2*n,n)*factorial(n) for n in range(0, 17)] # Zerinvary Lajos, Dec 03 2009
    

Formula

E.g.f.: (1-4*x)^(-1/2).
a(n) = (2*n)!/n! = Product_{k=0..n-1} (4*k + 2) = A081125(2*n).
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x/4)/(sqrt(x)*2*sqrt(Pi)) dx, n >= 0. This representation is unique. - Karol A. Penson, Sep 18 2001
Define a'(1)=1, a'(n) = Sum_{k=1..n-1} a'(n-k)*a'(k)*C(n, k); then a(n)=a'(n+1). - Benoit Cloitre, Apr 27 2003
With interpolated zeros (1, 0, 2, 0, 12, ...) this has e.g.f. exp(x^2). - Paul Barry, May 09 2003
a(n) = A000680(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (4*i + 2) = 4^n*Pochhammer(1/2, n) = 4^n*GAMMA(n+1/2)/sqrt(Pi). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
For asymptotics, see the Robinson paper.
a(k) = (2*k)!/k! = Sum_{i=1..k+1} |A008275(i,k+1)| * k^(i-1). - André F. Labossière, Jun 21 2007
a(n) = 12*A051618(a) n >= 2. - Zerinvary Lajos, Feb 15 2008
a(n) = A000984(n)*A000142(n). - Zerinvary Lajos, Mar 25 2008
a(n) = A016825(n-1)*a(n-1). - Roger L. Bagula, Sep 17 2008
a(n) = (-1)^n*A097388(n). - D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
From Paul Barry, Jan 15 2009: (Start)
G.f.: 1/(1-2x/(1-4x/(1-6x/(1-8x/(1-10x/(1-... (continued fraction);
a(n) = (n+1)!*A000108(n). (End)
a(n) = Sum_{k=0..n} A132393(n,k)*2^(2n-k). - Philippe Deléham, Feb 10 2009
G.f.: 1/(1-2x-8x^2/(1-10x-48x^2/(1-18x-120x^2/(1-26x-224x^2/(1-34x-360x^2/(1-42x-528x^2/(1-... (continued fraction). - Paul Barry, Nov 25 2009
a(n) = A173333(2*n,n) for n>0; cf. A006963, A001761. - Reinhard Zumkeller, Feb 19 2010
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term of M^n, M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
...
(End)
a(n) = (-2)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0), where Q(k) = 1 + x*(4*k+2) - x*(4*k+4)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 18 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(8*k+4)/(x*(8*k+4) - 1 + 8*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
D-finite with recurrence: a(n) = (4*n-6)*a(n-2) + (4*n-3)*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 07 2013
Sum_{n>=0} 1/a(n) = (exp(1/4)*sqrt(Pi)*erf(1/2) + 2)/2 = 1 + A214869, where erf(x) is the error function. - Ilya Gutkovskiy, Nov 10 2016
Sum_{n>=0} (-1)^n/a(n) = 1 - sqrt(Pi)*erfi(1/2)/(2*exp(1/4)), where erfi(x) is the imaginary error function. - Amiram Eldar, Feb 20 2021
a(n) = 1/([x^n] hypergeom([1], [1/2], x/4)). - Peter Luschny, Sep 13 2024
a(n) = 2^n*n!*JacobiP(n, -1/2, -n, 3). - Peter Luschny, Jan 22 2025
G.f.: 2F0(1,1/2;;4x). - R. J. Mathar, Jun 07 2025

Extensions

More terms from James Sellers, May 01 2000

A052714 a(n) = 2^(n-1) * n! * Catalan(n-1) for n > 0 with a(0) = 0.

Original entry on oeis.org

0, 1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n+1) is the number of square roots of any permutation in S_{8*n} whose disjoint cycle decomposition consists of 2*n cycles of length 4. - Luis Manuel Rivera Martínez, Feb 26 2015

Crossrefs

Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), this sequence (or A144828) (m=2), A221954 (m=3), A052734 (m=4), A221953 (m=5), A221955 (m=6).

Programs

  • Magma
    [0] cat [Catalan(n-1)*2^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
    
  • Maple
    spec := [S,{B=Union(Z,C),S=Union(B,C),C=Prod(S,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Join[{0}, Table[CatalanNumber[n-1] 2^(n-1) n!, {n,  1, 20}]] (* Vincenzo Librandi, Mar 11 2013 *)
  • PARI
    a(n)=if(n<1,0,2^(n-1)*(2*n-2)!/(n-1)!)
    
  • Sage
    [0]+[2^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021

Formula

E.g.f.: (1- sqrt(1-8*x))/4.
Recurrence: a(1) = 1, 4*(1 - 2*n)*a(n) + a(n+1) = 0.
a(n) = A052701(n)*n!.
a(n) = 8^(n-1)*Gamma(n-1/2)/Pi^(1/2), n>0.
a(n+1) = A090802(2n, n). - Ross La Haye, Oct 18 2005
a(n) = 2^(n-1)*(2*n-2)!/(n-1)! for n>=1.
E.g.f. A(x) satisfies differential equation A'(x)=1/(1-4*A(x)). - Vladimir Kruchinin, May 04 2011
G.f.: x/(1-4x/(1-8x/(1-12x/(1-16x/(1-20x/(1-24x/(1-28x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
G.f.: 2*x/G(0), where G(k)= 1 + 1/(1 - 2*x*(8*k+4)/(2*x*(8*k+4) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(0) = 0, a(1) = 1; a(n) = 2 * Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Jul 09 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 + e^(1/8)*sqrt(Pi)*erf(1/(2*sqrt(2)))/(2*sqrt(2)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - e^(-1/8)*sqrt(Pi)*erfi(1/(2*sqrt(2)))/(2*sqrt(2)), where erfi is the imaginary error function. (End)

Extensions

Edited by N. J. A. Sloane, Feb 03 2013

A144828 Partial products of successive terms of A017113; a(0)=1.

Original entry on oeis.org

1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000, 108794268166472120024432640000
Offset: 0

Views

Author

Philippe Deléham, Sep 21 2008

Keywords

Comments

a(n) is the number of signed permutations of length 4n that are equal to their reverse-inverses. Note that the reverse-inverse of a permutation is equivalent to a 90-degree rotation of the permutation's diagram (see the Hardt and Troyka link). - Justin M. Troyka, Aug 11 2011
Define the bar operation as an operation on signed permutation that flips the sign of each entry. Then a(n) is the number of signed permutations of length 2n that are equal to the bar of their inverses and equal to their reverse-complements (see the Hardt and Troyka link). - Justin M. Troyka, Aug 11 2011

Examples

			a(0)=1, a(1)=4, a(2)=4*12=48, a(3)=4*12*20=960, a(4)=4*12*20*28=26880, ...
Since a(1) = 4, there are 4 signed permutations of 4 that are equal to their reverse-inverses.  These are: (+2,+4,+1,+3), (+3,+1,+4,+2), (-2,-4,-1,-3), (-3,-1,-4,-2). - _Justin M. Troyka_, Aug 11 2011
G.f. = 1 + 4*x + 48*x^2 + 960*x^3 + 26880*x^4 + 967680*x^5 + 42577920*x^6 + ...
		

Crossrefs

Essentially the same as A052714. - N. J. A. Sloane, Feb 03 2013
Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or this sequence) (m=2), A221954 (m=3), A052734 (m=4), A221953 (m=5), A221955 (m=6).

Programs

  • Magma
    [2^k *Factorial(2*k) / Factorial(k): k in [0..20]]; // Vincenzo Librandi, Aug 11 2011
    
  • Maple
    A144828:= n-> 2^n*n!*binomial(2*n,n); seq(A144828(n), n=0..30); # G. C. Greubel, Apr 02 2021
  • Mathematica
    Table[4^n (2 n - 1)!!, {n, 0, 15}] (* Vincenzo Librandi, May 14 2015 *)
    Join[{1},FoldList[Times,(8*Range[0,20]+4)]] (* Harvey P. Dale, Dec 01 2015 *)
  • PARI
    a(n)=binomial(2*n,n)*n!<Charles R Greathouse IV, Jan 17 2012
    
  • PARI
    {a(n) = if( n<0, (-1)^n / a(-n), 2^n *(2*n)! / n!)}; /* Michael Somos, Jan 06 2017 */
    
  • Sage
    [2^n*factorial(n+1)*catalan_number(n) for n in (0..30)] # G. C. Greubel, Apr 02 2021

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*4^k*8^(n-k).
a(n) = A052714(n+1). - R. J. Mathar, Oct 01 2008
a(n) = 2^n *(2*n)! / n!. - Justin M. Troyka, Aug 11 2011
G.f.: 1/(1-4x/(1-8x/(1-12x/(1-16x/(1-20x/(1-24x/(1-28x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (-4)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
E.g.f.: 1/sqrt(1-8*x). - Philippe Deléham, May 14 2015
a(n) = 4^n * A001147(n). - Philippe Deléham, May 14 2015
a(n) = 8^n * Gamma(n + 1/2) / sqrt(Pi). - Daniel Suteu, Jan 06 2017
0 = a(n)*(8*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) and a(n) = (-1)^n / a(-n) for all n in Z. - Michael Somos, Jan 06 2017
a(n) = 2^n * (n+1)! * Catalan(n). - G. C. Greubel, Apr 02 2021
Sum_{n>=0} 1/a(n) = 1 + e^(1/8)*sqrt(Pi)*erf(1/(2*sqrt(2)))/(2*sqrt(2)), where erf is the error function. - Amiram Eldar, Dec 20 2022

A221954 a(n) = 3^(n-1) * n! * Catalan(n-1).

Original entry on oeis.org

1, 6, 108, 3240, 136080, 7348320, 484989120, 37829151360, 3404623622400, 347271609484800, 39588963481267200, 4988209398639667200, 688372897012274073600, 103255934551841111040000, 16727461397398259988480000, 2910578283147297237995520000, 541367560665397286267166720000, 107190777011748662680899010560000, 22510063172467219162988792217600000
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2013

Keywords

Comments

a(n+1) is the number of square roots of any permutation in S_{12*n} whose disjoint cycle decomposition consists of 2*n cycles of length 6. - Luis Manuel Rivera Martínez, Feb 26 2015

Crossrefs

Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or A144828) (m=2), this sequence (m=3), A052734 (m=4), A221953 (m=5), A221955 (m=6).
Cf. A000108.

Programs

  • Magma
    [Catalan(n-1)*3^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
    
  • Maple
    A221954:= n-> (3^(n-1)*n!/(2*(2*n-1))*binomial(2*n,n); seq(A221954(n), n=1..30); # G. C. Greubel, Apr 02 2021
  • Mathematica
    Table[CatalanNumber[n-1] 3^(n-1) n!, {n, 20}] (* Vincenzo Librandi, Mar 11 2013 *)
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1-sqrt(1-12*x))/6)) \\ Michel Marcus, Mar 04 2015
    
  • Sage
    [3^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021

Formula

a(n) = 6*(2*n-3)*a(n-1) with a(1)=1. - Bruno Berselli, Mar 11 2013
E.g.f.: (1 - sqrt(1-12*x))/6. - Luis Manuel Rivera Martínez, Mar 04 2015
a(n) = 12^(n-1) * Gamma(n - 1/2) / sqrt(Pi). - Daniel Suteu, Jan 06 2017
a(1) = 1; a(n) = 3 * Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Jul 09 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 + e^(1/12)*sqrt(Pi)*erf(1/(2*sqrt(3)))/(2*sqrt(3)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - e^(-1/12)*sqrt(Pi)*erfi(1/(2*sqrt(3)))/(2*sqrt(3)), where erfi is the imaginary error function. (End)

A221953 a(n) = 5^(n-1) * n! * Catalan(n-1).

Original entry on oeis.org

1, 10, 300, 15000, 1050000, 94500000, 10395000000, 1351350000000, 202702500000000, 34459425000000000, 6547290750000000000, 1374931057500000000000, 316234143225000000000000, 79058535806250000000000000, 21345804667687500000000000000, 6190283353629375000000000000000, 1918987839625106250000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2013

Keywords

Comments

a(n+1) is the number of square roots of any permutation in S_{20*n} whose disjoint cycle decomposition consists of 2*n cycles of length 10. - Luis Manuel Rivera Martínez, Feb 26 2015

Crossrefs

Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or A144828) (m=2), A221954 (m=3), A052734 (m=4), this sequence (m=5), A221955 (m=6).
Cf. A000108.

Programs

  • Magma
    [Catalan(n-1)*5^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
    
  • Maple
    A221953:= n-> (5^(n-1)*n!/(2*(2*n-1))*binomial(2*n,n); seq(A221953(n), n=1..30); # G. C. Greubel, Apr 02 2021
  • Mathematica
    Table[CatalanNumber[n - 1]  5^(n-1)  n!, {n, 20}] (* Vincenzo Librandi, Mar 11 2013 *)
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1-sqrt(1-20*x))/10)) \\ Michel Marcus, Mar 04 2015
    
  • Sage
    [5^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021

Formula

a(n) = 10*(2*n-3)*a(n-1) with a(1)=1. - Bruno Berselli, Mar 11 2013
E.g.f.: (1 - sqrt(1-20*x))/10. - Luis Manuel Rivera Martínez, Mar 04 2015
a(1) = 1; a(n) = 5 * Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Jul 10 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 + e^(1/20)*sqrt(Pi)*erf(1/(2*sqrt(5)))/(2*sqrt(5)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - e^(-1/20)*sqrt(Pi)*erfi(1/(2*sqrt(5)))/(2*sqrt(5)), where erfi is the imaginary error function. (End)

A221955 a(n) = 6^(n-1) * n! * Catalan(n-1).

Original entry on oeis.org

1, 12, 432, 25920, 2177280, 235146240, 31039303680, 4842131374080, 871583647334400, 177803064056217600, 40539098604817612800, 10215852848414038425600, 2819575386162274605465600, 845872615848682381639680000, 274062727534973091651256320000, 95373829182170635894637199360000, 35479064455767476552805038161920000
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2013

Keywords

Comments

a(n+1) is the number of square roots of any permutation in S_{24*n} whose disjoint cycle decomposition consists of 2*n cycles of length 12. - Luis Manuel Rivera Martínez, Feb 28 2015

Crossrefs

Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or A144828) (m=2), A221954 (m=3), A052734 (m=4), A221953 (m=5), this sequence (m=6).
Cf. A000108.

Programs

  • Magma
    [Catalan(n-1)*6^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
    
  • Maple
    A221955:= n-> 3*6^(n-2)*n!*binomial(2*n,n)/(2*n-1); seq(A221955(n), n=1..30); # G. C. Greubel, Apr 02 2021
  • Mathematica
    Table[CatalanNumber[n-1] 6^(n-1) n!, {n, 20}] (* Vincenzo Librandi, Mar 11 2013 *)
    nxt[{n_,a_}]:={n+1,12a(2n-1)}; NestList[nxt,{1,1},20][[;;,2]] (* Harvey P. Dale, Sep 21 2024 *)
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1-sqrt(1-24*x))/12)) \\ Michel Marcus, Mar 04 2015
    
  • Sage
    [6^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021

Formula

a(n) = 12*(2*n-3)*a(n-1) with a(1)=1. - Bruno Berselli, Mar 11 2013
E.g.f.: (1-sqrt(1-24*x))/12. - Luis Manuel Rivera Martínez, Mar 04 2015
a(1) = 1; a(n) = 6 * Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Jul 10 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 + e^(1/24)*sqrt(Pi)*erf(1/(2*sqrt(6)))/(2*sqrt(6)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - e^(-1/24)*sqrt(Pi)*erfi(1/(2*sqrt(6)))/(2*sqrt(6)), where erfi is the imaginary error function. (End)

A174378 Triangle T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 4, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 12, 12, 1, 1, 16, 192, 16, 1, 1, 20, 320, 320, 20, 1, 1, 24, 480, 7680, 480, 24, 1, 1, 28, 672, 13440, 13440, 672, 28, 1, 1, 32, 896, 21504, 430080, 21504, 896, 32, 1, 1, 36, 1152, 32256, 774144, 774144, 32256, 1152, 36, 1, 1, 40, 1440, 46080, 1290240, 30965760, 1290240, 46080, 1440, 40, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 17 2010

Keywords

Comments

Row sums are: {1, 2, 10, 26, 226, 682, 8690, 28282, 474946, 1615178, ...}.

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  8,    1;
  1, 12,   12,     1;
  1, 16,  192,    16,       1;
  1, 20,  320,   320,      20,        1;
  1, 24,  480,  7680,     480,       24,       1;
  1, 28,  672, 13440,   13440,      672,      28,     1;
  1, 32,  896, 21504,  430080,    21504,     896,    32,    1;
  1, 36, 1152, 32256,  774144,   774144,   32256,  1152,   36,  1;
  1, 40, 1440, 46080, 1290240, 30965760, 1290240, 46080, 1440, 40,  1;
		

Crossrefs

Cf. A159623 (q=1), A174376 (q=2), A174377 (q=3), this sequence (q=4).
Cf. A052734.

Programs

  • Mathematica
    T[n_, k_, q_]:= If[Floor[n/2]>=k, n!*q^k/(n-k)!, n!*q^(n-k)/k!];
    Table[T[n, k, 4], {n,0,12}, {k,0,n}]//Flatten
  • Sage
    f=factorial
    def T(n,k,q): return f(n)*q^k/f(n-k) if ((n//2)>k-1) else f(n)*q^(n-k)/f(k)
    flatten([[T(n,k,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 28 2021

Formula

T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 2.
T(n, n-k) = T(n, k).
T(2*n, n) = A052734(n+1). - G. C. Greubel, Nov 28 2021

Extensions

Edited by G. C. Greubel, Nov 28 2021

A052737 a(n) = ((2*n)!/n!)*2^(2*n+1).

Original entry on oeis.org

0, 2, 16, 384, 15360, 860160, 61931520, 5449973760, 566797271040, 68015672524800, 9250131463372800, 1406019982432665600, 236211357048687820800, 43462889696958559027200, 8692577939391711805440000, 1877596834908609749975040000, 435602465698797461994209280000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A simple context-free grammar in a labeled universe.

Crossrefs

Cf. A052707.

Programs

  • Maple
    spec := [S,{B=Union(Z,C),S=Union(B,Z,C),C=Prod(S,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    [seq((2*n)!/n!*2^(2*n+1), n=0..12)]; # Zerinvary Lajos, Sep 28 2006
  • Mathematica
    With[{nn=20},CoefficientList[Series[1/4-Sqrt[1-16x]/4,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2015 *)

Formula

E.g.f.: 1/4 - (1/4)*sqrt(1-16*x).
D-finite Recurrence: a(1)=2, (8-16*n)*a(n) + a(n+1)=0, i.e. a(n) +8*(-2*n+3)*a(n-1)=0.
a(n) = (1/8)*16^(n+1)*Gamma(n+1/2)/Pi^(1/2).
a(n) = n! * A052707(n). - R. J. Mathar, Aug 21 2014
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=1} 1/a(n) = sqrt(Pi)*exp(1/16)*erf(1/4)/8, where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(Pi)*exp(-1/16)*erfi(1/4)/8, where erfi is the imaginary error function. (End)
a(n)=2*A052734(n). - R. J. Mathar, Jan 13 2025

Extensions

Better definition from Zerinvary Lajos, Sep 28 2006
More terms from Harvey P. Dale, Aug 12 2015
Showing 1-8 of 8 results.