A055252 Triangle of partial row sums (prs) of triangle A055249.
1, 4, 1, 13, 5, 1, 38, 18, 6, 1, 104, 56, 24, 7, 1, 272, 160, 80, 31, 8, 1, 688, 432, 240, 111, 39, 9, 1, 1696, 1120, 672, 351, 150, 48, 10, 1, 4096, 2816, 1792, 1023, 501, 198, 58, 11, 1, 9728, 6912, 4608, 2815, 1524, 699, 256, 69, 12, 1, 22784, 16640, 11520
Offset: 0
Examples
[0] 1 [1] 4, 1 [2] 13, 5, 1 [3] 38, 18, 6, 1 [4] 104, 56, 24, 7, 1 [5] 272, 160, 80, 31, 8, 1 [6] 688, 432, 240, 111, 39, 9, 1 [7] 1696, 1120, 672, 351, 150, 48, 10, 1 Fourth row polynomial (n = 3): p(3, x) = 38 + 18*x + 6*x^2 + x^3.
Programs
-
Maple
T := (n, k) -> binomial(n, k)*hypergeom([3, k - n], [k + 1], -1): for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024
Formula
a(n, m)=sum(A055249(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055249(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^2)/(1-2*x)^3)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([3, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024
A060922 Convolution triangle for Lucas numbers A000032(n+1), n >= 0.
1, 3, 1, 4, 6, 1, 7, 17, 9, 1, 11, 38, 39, 12, 1, 18, 80, 120, 70, 15, 1, 29, 158, 315, 280, 110, 18, 1, 47, 303, 753, 905, 545, 159, 21, 1, 76, 566, 1687, 2568, 2120, 942, 217, 24, 1, 123, 1039, 3612, 6666, 7043, 4311
Offset: 0
Comments
In the language of Shapiro et al. (see A053121 for the reference) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. G.f. for row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) is (1+2*z)/(1-(1+x)*z-(1+2*x)*z^2).
Row sums give A060925. Column sequences (without leading zeros) are, for m=0..6: A000032(n+1)= A000204(n+1) (Lucas), A004799(n+1), A060929-33.
For the m-th column sequence (without leading zeros) one has: a(n+m,m)= (pL1(m,n)*L(n+2)+pL2(m,n)*L(n+1))/(m!*5^m), m >= 0, with the Lucas numbers L(n)=A000032(n), n >= 0 and the row polynomials pL1(n,x) := sum(A061188(n,m)*x^n,m=0..n) and pL2(n,x) := sum(A061189(n,m)*x^m,m=0..n).
Riordan array ((1+2*x)/(1-x-x^2), x*(1+2*x)/(1-x-x^2)). - Philippe Deléham, Jan 21 2014
Examples
p(2,x) = 4+6*x+x^2. Triangle begins: 1 ; 3, 1; 4, 6, 1; 7, 17, 9, 1; 11, 38, 39, 12, 1; 18, 80, 120, 70, 15, 1; 29, 158, 315, 280, 110, 18, 1; 47, 303, 753, 905, 545, 159, 21, 1;
Crossrefs
Cf. A000032.
Programs
-
Maple
# Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left. PMatrix(10, A000204); # Peter Luschny, Oct 19 2022
Formula
a(n, m)=((n-m+1)*a(n, m-1)+2*(2*n-m)*a(n-1, m-1)+4*(n-1)*a(n-2, m-1))/(5*m), n >= m >= 1, a(n, 0)= A000204(n+1)= A000032(n+1).
G.f. for m-th column: ((1+2*x)/(1-x-x^2))* ((x*(1+2*x))/(1-x-x^2))^m.
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 21 2014
Extensions
Example improved by Philippe Deléham, Jan 21 2014
A054450 Triangle of partial row sums of unsigned triangle A049310(n,m), n >= m >= 0 (Chebyshev S-polynomials).
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 4, 4, 1, 1, 8, 8, 5, 5, 1, 1, 13, 12, 12, 6, 6, 1, 1, 21, 21, 17, 17, 7, 7, 1, 1, 34, 33, 33, 23, 23, 8, 8, 1, 1, 55, 55, 50, 50, 30, 30, 9, 9, 1, 1, 89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1, 144, 144, 138, 138, 103, 103, 47, 47, 11, 11, 1, 1
Offset: 0
Comments
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is Fib(z)/(1-x*z/(1-z^2)) where Fib(x)=1/(1-x-x^2) = g.f. for A000045(n+1) (Fibonacci numbers without 0).
This is the first member of the family of Riordan-type matrices obtained from the unsigned convolution matrix A049310 by repeated application of the partial row sums procedure.
Examples
Triangle begins as: 1; 1, 1; 2, 1, 1; 3, 3, 1, 1; 5, 4, 4, 1, 1; 8, 8, 5, 5, 1, 1; 13, 12, 12, 6, 6, 1, 1; 21, 21, 17, 17, 7, 7, 1, 1; 34, 33, 33, 23, 23, 8, 8, 1, 1; 55, 55, 50, 50, 30, 30, 9, 9, 1, 1; 89, 88, 88, 73, 73, 38, 38, 10, 10, 1, 1; ... Fourth row polynomial (n=3): p(3,x) = 3 + 3*x + x^2 + x^3.
Links
Crossrefs
Programs
-
Magma
A049310:= func< n,k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >; A054450:= func< n,k | (&+[Abs(A049310(n,j)): j in [k..n]]) >; [A054450(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
-
Mathematica
A049310[n_, k_]:= A049310[n, k]= If[n<0, 0, If[k==n, 1, A049310[n-1, k-1] - A049310[n-2, k] ]]; A054450[n_, k_]:= A054450[n, k]= Sum[Abs[A049310[n,j]], {j,k,n}]; Table[A054450[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 25 2022 *)
-
SageMath
@CachedFunction def A049310(n, k): if (n<0): return 0 elif (k==n): return 1 else: return A049310(n-1, k-1) - A049310(n-2, k) def A054450(n,k): return sum( abs(A049310(n,j)) for j in (k..n) ) flatten([[A054450(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 25 2022
Formula
T(n, m) = Sum_{k=m..n} |A049310(n, k)| (sequence of partial row sums in column m).
Column m recursion: T(n, m) = Sum_{j=m..n} T(j-1, m)*|A049310(n-j, 0)| + |A049310(n, m)|, n >= m >= 0, a(n, m) := 0 if n
T(n, 0) = A000045(n+1).
T(n, 1) = A052952(n-1).
T(n, 2) = A054451(n-2).
G.f. for column m: Fib(x)*(x/(1-x^2))^m, m >= 0, with Fib(x) = g.f. A000045(n+1).
The corresponding square array has T(n, k) = Sum_{j=0..floor(k/2)} binomial(n+k-j, j). - Paul Barry, Oct 23 2004
From G. C. Greubel, Jul 25 2022: (Start)
T(n, 3) = A099571(n-3).
T(n, 4) = A099572(n-4).
T(n, n) = T(n, n-1) = A000012(n).
T(n, n-2) = A000027(n), n >= 2.
T(n, n-3) = A000027(n), n >= 3.
T(n, n-4) = A152948(n), n >= 4.
T(n, n-5) = A152948(n), n >= 5.
T(n, n-6) = A038793(n), n >= 6.
T(n, n-8) = A038794(n), n >= 8.
T(n, n-10) = A038795(n), n >= 10.
T(n, n-12) = A038796(n), n >= 12. (End)
A104219 Triangle read by rows: T(n,k) is number of Schroeder paths of length 2n and having k peaks at height 1, for 0 <= k <= n.
1, 1, 1, 3, 2, 1, 11, 7, 3, 1, 45, 28, 12, 4, 1, 197, 121, 52, 18, 5, 1, 903, 550, 237, 84, 25, 6, 1, 4279, 2591, 1119, 403, 125, 33, 7, 1, 20793, 12536, 5424, 1976, 630, 176, 42, 8, 1, 103049, 61921, 26832, 9860, 3206, 930, 238, 52, 9, 1, 518859, 310954, 134913, 49912
Offset: 0
Comments
A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U = (1,1), D = (1,-1) and H = (2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318).
This is an example of a Riordan (lower triangular) matrix. See the Shapiro et al. reference quoted under A053121. More precisely, this ordinary convolution triangle belongs to the Bell subgroup of the Riordan group. In the Shapiro et al. notation this is a Bell matrix (g(x), x*g(x)) with g(x) = (1+x-sqrt(1-6*x+x^2))/(4*x), the o.g.f. of A001003(n), n >= 0.
The g.f. for the row polynomials p(n,x) = Sum_{k=0..n} a(n,k)*x^k is g(y)/(1-x*y*g(y)) = (1-2*x*y+y-sqrt(1-6*y+y^2))/(2*y*(2-x-x*y+x^2*y)).
Triangular array in A011117 transposed. - Philippe Deléham, Mar 16 2005
Examples
Triangle starts: [0] 1; [1] 1, 1; [2] 3, 2, 1; [3] 11, 7, 3, 1; [4] 45, 28, 12, 4, 1; [5] 197, 121, 52, 18, 5, 1; [6] 903, 550, 237, 84, 25, 6, 1; T(3,1)=7 because we have HH(UD),H(UD)H,(UD)HH,UUDD(UD),(UD)UUDD,(UD)UHD, and UHD(UD) (the peaks UD at height 1 are shown between parentheses). From _Philippe Deléham_, Dec 04 2015: (Start) Production matrix begins: 1, 1; 2, 1, 1; 4, 2, 1, 1; 8, 4, 2, 1, 1; 16, 8, 4, 2, 1, 1; 32, 16, 8, 4, 2, 1, 1; 64, 32, 16, 8, 4, 2, 1, 1; (End)
Links
- Peter Luschny, Row n for n = 0..44.
- Shishuo Fu, Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- E. Pergola and R. A. Sulanke, Schroeder Triangles, Paths and Parallelogram Polyominoes, J. Integer Sequences, 1 (1998), #98.1.7.
- Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, preprint 2013; Combinatorics, Probability and Computing, Volume 24, Issue 1 (Honouring the Memory of Philippe Flajolet - Part 3) January 2015, pp. 354-372.
Crossrefs
Programs
-
Maple
G:=2/(1+z+sqrt(1-6*z+z^2)-2*z*t): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form # Alternatively: T_row := proc(n) local c,f,s; c := N -> hypergeom([1-N, N+2], [2], -1); f := n -> 1+add(simplify(c(i))*x^i,i=1..n): s := j -> coeff(series(f(j)/(1-x*t*f(j)),x,j+1),x,j): seq(coeff(s(n),t,j),j=0..n) end: seq(T_row(n),n=0..10); # Peter Luschny, Oct 30 2015
-
Mathematica
T[n_, k_] := (-1)^(n - k) Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, 2]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Peter Luschny, Jan 08 2018 *)
-
PARI
{T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff(2/(1+X+sqrt(1-6*X+X^2)-2*X*Y),n,x),k,y)} \\ Paul D. Hanna, Mar 30 2005
-
Sage
def A104219_row(n): @cached_function def prec(n, k): if k==n: return 1 if k==0: return 0 return prec(n-1,k-1)+sum(prec(n,k+i-1) for i in (2..n-k+1)) return [prec(n, k) for k in (1..n)] for n in (1..9): print(A104219_row(n)) # Peter Luschny, Mar 16 2016
Formula
G.f.: 2/(1+z+sqrt(1-6*z+z^2)-2*z*t).
Another version of the triangle T(n, k), 0 <= k <= n, read by rows; given by [0, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] = 1; 0, 1; 0, 1, 1; 0, 3, 2, 1; 0, 11, 7, 3, 1; 0, 45, 28, 12, 4, 1; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 16 2005
a(n, k) = (k+1)*hypergeom([1-n+k, n+2], [2], -1) if n > k; a(n, n)=1; a(n, k)=0 if n < k. - Wolfdieter Lang, Sep 12 2005
a(n, k) = ((k+1)/(n-k))*Sum_{p=1..n-k} binomial(n-k, p)*binomial(n+p, p-1) if n > k; a(n, n)=1; a(n, k)=0 if n < k. Proof with Lagrange's inversion theorem based on eq. y = 1+x*(1-2/y) where y=1/g(x), with g(x) the o.g.f. of A001003(n), n >= 0. Use G(k;y):=1/y^(k+1), k >= 0 to find the coefficients a(n, k) of x^n of G(k;1/g(x)). For this method see also the Larcombe and French paper on Catalan convolutions quoted under A033184. - Wolfdieter Lang, Sep 12 2005
G.f.: 1/(1-x*y-x/(1-x-x/(1-x-x/(1-x-x/(1-x-x/(1-... (continued fraction). - Paul Barry, Feb 01 2009
T((m+1)*n+r-1,m*n+r-1)*r/(m*n+r) = Sum_{k=1..n} (k/n)*T((m+1)*n-k-1,m*n-1)*(r+k,r), n >= m > 1, also T(n-1,m-1) = (m/n)*Sum_{k=1..n-m+1} k*A001003(k-1)*T(n-k-1,m-2), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n, k) = (-1)^(n - k)*binomial(n, k)*hypergeom([k - n, n + 1], [k + 2], 2). - Peter Luschny, Jan 08 2018
A054458 Convolution triangle based on A001333(n), n >= 1.
1, 3, 1, 7, 6, 1, 17, 23, 9, 1, 41, 76, 48, 12, 1, 99, 233, 204, 82, 15, 1, 239, 682, 765, 428, 125, 18, 1, 577, 1935, 2649, 1907, 775, 177, 21, 1, 1393, 5368, 8680, 7656, 4010, 1272, 238, 24, 1, 3363, 14641, 27312, 28548, 18358, 7506, 1946, 308, 27, 1
Offset: 0
Comments
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The G.f. for the row polynomials p(n,x) (increasing powers of x) is LPell(z)/(1-x*z*LPell(z)) with LPell(z) given in 'Formula'.
Mirror image of triangle in A209696. - Philippe Deléham, Mar 24 2012
Subtriangle of the triangle given by (0, 3, -2/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 25 2012
Riordan array ((1+x)/(1-2*x-x^2), (x+x^2)/(1-2*x-x^2)). - Philippe Deléham, Mar 25 2012
Examples
Fourth row polynomial (n=3): p(3,x)= 17+23*x+9*x^2+x^3. Triangle begins : 1 3, 1 7, 6, 1 17, 23, 9, 1 41, 76, 48, 12, 1 99, 233, 204, 82, 15, 1 239, 682, 765, 428, 125, 18, 1. - _Philippe Deléham_, Mar 25 2012 (0, 3, -2/3, -1/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins : 1 0, 1 0, 3, 1 0, 7, 6, 1 0, 17, 23, 9, 1 0, 41, 76, 48, 12, 1 0, 99, 233, 204, 82, 15, 1 0, 239, 682, 765, 428, 125, 15, 1. - _Philippe Deléham_, Mar 25 2012
Links
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Crossrefs
Formula
a(n, m) := ((n-m+1)*a(n, m-1) + (2n-m)*a(n-1, m-1) + (n-1)*a(n-2, m-1))/(4*m), n >= m >= 1; a(n, 0)= A001333(n+1); a(n, m) := 0 if n
G.f. for column m: LPell(x)*(x*LPell(x))^m, m >= 0, with LPell(x)= (1+x)/(1-2*x-x^2) = g.f. for A001333(n+1).
G.f.: (1+x)/(1-2*x-y*x-x^2-y*x^2). - Philippe Deléham, Mar 25 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 3 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2012
A055587 Triangle with columns built from row sums of the partial row sums triangles obtained from Pascal's triangle A007318. Essentially A049600 formatted differently.
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 20, 13, 5, 1, 1, 32, 48, 38, 19, 6, 1, 1, 64, 112, 104, 63, 26, 7, 1, 1, 128, 256, 272, 192, 96, 34, 8, 1, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1, 1024, 2816, 4096
Offset: 0
Comments
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-z)*(1-x*z*(1-z)/(1-2*z))).
Examples
{1}; {1, 1}; {1, 2, 1}; {1, 4, 3, 1}; {1, 8, 8, 4, 1}; ... Fourth row polynomial (n=3): p(3,x)= 1+4*x+3*x^2+x^3
Crossrefs
Programs
-
Mathematica
t[n_, k_] := Hypergeometric2F1[k, k-n, 1, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Paul D. Hanna *)
-
PARI
{T(n,k) = if( n<0 || k<0, 0, polcoeff( polcoeff( 1 / ((1 - z) * (1 - x*z * (1 - z) / (1 - 2*z) + z * O(z^n) + x * O(x^k))), k), n))}; /* Michael Somos, Sep 30 2003 */
-
PARI
{T(n,k)=if(k>n||n<0||k<0,0,if(k==0||k==n,1, sum(j=0,n-k,binomial(n-k,j)*binomial(k+j-1,k-1)););)} (Hanna)
Formula
a(n, m)= Am(n, 0) if n >= m >= 0 and a(n, m) := 0 if nA007318) with the lower triangular matrix A007318 (Pascal triangle) and prs^(m) is the partial row sums (prs) mapping for triangular matrices applied m times. See e.g. A055584 for m=4.
G.f. for column m: (1/(1-x))*(x*(1-x)/(1-2*x))^m, m >= 0.
T(n, k) = sum_{j=0..n-k} C(n-k, j)*C(k+j-1, k-1). - Paul D. Hanna, Jan 14 2004
A108044 Triangle read by rows: right half of Pascal's triangle (A007318) interspersed with 0's.
1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 6, 0, 4, 0, 1, 0, 10, 0, 5, 0, 1, 20, 0, 15, 0, 6, 0, 1, 0, 35, 0, 21, 0, 7, 0, 1, 70, 0, 56, 0, 28, 0, 8, 0, 1, 0, 126, 0, 84, 0, 36, 0, 9, 0, 1, 252, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1, 0, 462, 0, 330, 0, 165, 0, 55, 0, 11, 0, 1, 924, 0, 792, 0, 495, 0, 220, 0, 66
Offset: 0
Comments
Column k has e.g.f. Bessel_I(k,2x). - Paul Barry, Mar 10 2010
T(n,k) is the number of binary sequences of length n in which the number of ones minus the number of zeros is k. If 2 divides(n+k), such a sequence will have (n+k)/2 ones and (n-k)/2 zeros. Since there are C(n,(n+k)/2) ways to choose the sequence entries that get a one, T(n,k)=binomial(n,(n+k)/2) whenever (n+k) is even and T(n,k)= 0 otherwise. See the example below in the example section. - Dennis P. Walsh, Apr 11 2012
T(n,k) is the number of walks on the semi-infinite integer line with n steps that end at k. The walks start at 0, move at each step either one to the left or one to the right, and never enter the region of negative k. [Walks with impenetrable wall at -1/2. Dyck excursions of n steps that end at level k.] The variant without the restriction of negative positions is A053121. - R. J. Mathar, Nov 02 2023
Examples
Triangle begins: 1 0 1 2 0 1 0 3 0 1 6 0 4 0 1 0 10 0 5 0 1 20 0 15 0 6 0 1 From _Paul Barry_, Mar 10 2010: (Start) Production matrix is 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1 (End) T(5,1)=10 since there are 10 binary sequences of length 5 in which the number of ones exceed the number of zeros by exactly 1, namely, 00111, 01011, 01101, 01110, 10011, 10101, 10110, 11001, 11010, and 11100. Also, T(5,2)=0 since there are no binary sequences in which the number of ones exceed the number of zeros by exactly 2. - _Dennis P. Walsh_, Apr 11 2012
Links
- Harvey P. Dale, Rows n = 0..125 of triangle, flattened
- Paul Barry and Aoife Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4, section 8.
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 14.
- Robert S. Maier, Sheffer Polynomials and the s-ordering of Exponential Boson Operators, arXiv:2508.13094 [quant-ph], 2025. See p. 27.
- Paul Peart and Wen-Jin Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
- Louis W. Shapiro, Seyoum Getu, Wen-Jin Woan, and Leon C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
import Data.List (intersperse) a108044 n k = a108044_tabl !! n !! k a108044_row n = a108044_tabl !! n a108044_tabl = zipWith drop [0..] $ map (intersperse 0) a007318_tabl -- Reinhard Zumkeller, May 18 2013
-
Maple
T:=proc(n,k) if n+k mod 2 = 0 then binomial(n,(n+k)/2) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Jun 05 2005
-
Mathematica
b[n_,k_]:=If[EvenQ[n+k],Binomial[n,(n+k)/2],0]; Flatten[Table[b[n,k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, May 05 2013 *)
Formula
Each entry is the sum of those in the previous row that are to its left and to its right.
Riordan array (1/sqrt(1-4*x^2), (1-sqrt(1-4*x^2))/(2*x)).
T(n, k) = binomial(n, (n+k)/2) if n+k is even, T(n, k)=0 if n+k is odd. G.f.=f/(1-tg), where f=1/sqrt(1-4x^2) and g=(1-sqrt(1-4x^2))/(2x). - Emeric Deutsch, Jun 05 2005
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - sqrt(1 - 4*x) )/(2*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = 1 + x^2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ).
The inverse array is A108045 (a hitting time array with h(x) = x/(1 + x^2)). (End)
Extensions
More terms from Emeric Deutsch and Christian G. Bower, Jun 05 2005
A115193 Generalized Catalan triangle of Riordan type, called C(1,2).
1, 1, 1, 3, 3, 1, 13, 13, 5, 1, 67, 67, 27, 7, 1, 381, 381, 157, 45, 9, 1, 2307, 2307, 963, 291, 67, 11, 1, 14589, 14589, 6141, 1917, 477, 93, 13, 1, 95235, 95235, 40323, 12867, 3363, 723, 123, 15, 1, 636925
Offset: 0
Comments
This triangle is the first of a family of generalizations of the Catalan convolution triangle A033184 (which belongs to the Bell subgroup of the Riordan group).
The o.g.f. of the row polynomials P(n,x):=Sum_{m=0..n} a(n,m)*x^n is D(x,z) = g(z)/(1 - x*z*c(2*z)) = g(z)*(2*z-x*z*(1-2*z*c(2*z)))/(2*z-x*z+(x*z)^2), with g(z) and c(z) defined below.
This is the Riordan triangle named (g(x),x*c(2*x)) with g(x):=(1+2*x*c(2*x))/(1+x) and c(x) is the o.g.f. of A000108 (Catalan numbers). g(x) is the o.g.f. of A064062 (C(2;n) Catalan generalization).
The column sequences (without leading zeros) are A064062, A064062(n+1), A084076, A115194, A115202-A115204, for m=0..6.
For general Riordan convolution triangles (lower triangular matrices) see the Shapiro et al. reference given in A053121.
Examples
Triangle begins: 1; 1, 1; 3, 3, 1; 13, 13, 5, 1; 67, 67, 27, 7, 1; ... Production matrix begins: 1, 1; 2, 2, 1; 4, 4, 2, 1; 8, 8, 4, 2, 1; 16, 16, 8, 4, 2, 1; 32, 32, 16, 8, 4, 2, 1; 64, 64, 32, 16, 8, 4, 2, 1; 128, 128, 64, 32, 16, 8, 4, 2, 1; ... _Philippe Deléham_, Sep 22 2014
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..5150 (up to row 100)
- Wolfdieter Lang, First 10 rows.
Crossrefs
Programs
-
Maple
lim:=7: c:=(1-sqrt(1-8*x))/(4*x): g:=(1+2*x*c)/(1+x): gf1:=g*(x*c)^m: for m from 0 to lim do t:=taylor(gf1,x,lim+1): for n from 0 to lim do a[n,m]:=coeff(t,x,n):od:od: seq(seq(a[n,m],m=0..n),n=0..lim); # Nathaniel Johnston, Apr 30 2011
-
Mathematica
A110510[n_, k_] := (k/n)*Binomial[2*n - k - 1, n - k]*2^(n - k); T[n_, k_] := If[n == 0, 1, Sum[A110510[n, i], {i, k, n}]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 17 2025 *)
Formula
G.f. for column m>=0 is g(x)*(x*c(2*x))^m, with g(x):=(1+2*x*c(2*x))/(1+x) and c(x) is the o.g.f. of A000108 (Catalan numbers).
T(n,k) = Sum_{i=k..n} A110510(n,i) for 0 <= k <= n. - Werner Schulte, Mar 24 2019
A189231 Extended Catalan triangle read by rows.
1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 2, 8, 3, 4, 1, 10, 5, 15, 4, 5, 1, 5, 30, 9, 24, 5, 6, 1, 35, 14, 63, 14, 35, 6, 7, 1, 14, 112, 28, 112, 20, 48, 7, 8, 1, 126, 42, 252, 48, 180, 27, 63, 8, 9, 1, 42, 420, 90, 480, 75, 270, 35, 80, 9, 10, 1, 462, 132, 990, 165, 825, 110, 385, 44, 99, 10, 11, 1
Offset: 0
Comments
Let S(n,k) denote the coefficients of the positive powers of the Laurent polynomials C_n(x) = (x+1/x)^(n-1)*(x-1/x)*(x+1/x+n) (if n>0) and C_0(x) = 0.
Then T(n,k) = S(n+1,k+1) for n>=0, k>=0.
The classical Catalan triangle A053121(n,k) can be recovered from this triangle by setting T(n,k) = 0 if n-k is odd.
The complementary Catalan triangle A189230(n,k) can be recovered from this triangle by setting T(n,k) = 0 if n-k is even.
T(n,0) are the extended Catalan numbers A057977(n).
Examples
The Laurent polynomials: C(0,x) = 0 C(1,x) = x - 1/x C(2,x) = x^2 + x - 1/x - 1/x^2 C(3,x) = x^3 + 2 x^2 + x - 1/x - 2/x^2 -1/x^3 Triangle T(n,k) = S(n+1,k+1) starts [0] 1, [1] 1, 1, [2] 1, 2, 1, [3] 3, 2, 3, 1, [4] 2, 8, 3, 4, 1, [5] 10, 5, 15, 4, 5, 1, [6] 5, 30, 9, 24, 5, 6, 1, [7] 35, 14, 63, 14, 35, 6, 7, 1, [0],[1],[2],[3],[4],[5],[6],[7]
Links
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, The lost Catalan numbers
Programs
-
Maple
A189231_poly := (n,x)-> `if`(n=0,0,(x+1/x)^(n-2)*(x-1/x)*(x+1/x+n-1)): seq(print([n],seq(coeff(expand(A189231_poly(n,x)),x,k),k=1..n)),n=1..9); A189231 := proc(n,k) option remember; `if`(k>n or k<0, 0, `if`(n=k, 1, A189231(n-1,k-1)+modp(n-k,2)*A189231(n-1,k)+A189231(n-1,k+1))) end: seq(print(seq(A189231(n,k),k=0..n)),n=0..9);
-
Mathematica
t[n_, k_] /; (k > n || k < 0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = t[n-1, k-1] + Mod[n-k, 2]*t[n-1, k] + t[n-1, k+1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2013 *)
Formula
Recurrence: If k>n or k<0 then T(n,k) = 0 else if n=k then T(n,k) = 1; otherwise T(n,k) = T(n-1,k-1) + ((n-k) mod 2)*T(n-1,k) + T(n-1,k+1).
S(n,k) = (k/n)* A162246(n,k) for n>0 where S(n,k) are the coefficients from the definition provided the triangle A162246 is indexed in Laurent style by the recurrence: if abs(k) > n then A162246(n,k) = 0 else if n = k then A162246(n,k) = 1 and otherwise A162246(n,k) = A162246(n-1,k-1)+ modp(n-k,2) * A162246(n-1,k) + A162246(n-1,k+1).
A363718 Irregular triangle read by rows. An infinite binary tree which has root node 1 in row n = 0. Each node then has left child m-1 if greater than 0 and right child m+1, where m is the value of the parent node.
1, 2, 1, 3, 2, 2, 4, 1, 3, 1, 3, 3, 5, 2, 2, 4, 2, 2, 4, 2, 4, 4, 6, 1, 3, 1, 3, 3, 5, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 7, 2, 2, 4, 2, 2, 4, 2, 4, 4, 6, 2, 2, 4, 2, 2, 4, 2, 4, 4, 6, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 6, 4, 6, 6, 8, 1, 3, 1, 3, 3, 5, 1, 3, 1
Offset: 0
Comments
The paths through the tree represent the compositions counted in A173258 that have first part 1.
For rows n > 1, row n starts with row n-2.
Any positive number k will first appear in the (k-1)-th row and thereafter in rows of opposite parity to k. The number of times k will appear in row n is A053121(n,k-1).
Row n >= 1 gives the row lengths of the Christmas tree pattern of order n (cf. A367508). - Paolo Xausa, Nov 26 2023
A new row can be generated by applying the morphism 1 -> 2, t -> {t-1,t+1} (for t > 1) to the previous row. - Paolo Xausa, Dec 08 2023
Examples
Triangle begins: n=0: 1; n=1: 2; n=2: 1, 3; n=3: 2, 2, 4; n=4: 1, 3, 1, 3, 3, 5; n=5: 2, 2, 4, 2, 2, 4, 2, 4, 4, 6; n=6: 1, 3, 1, 3, 3, 5, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 7; ... The binary tree starts with root 1 in row n = 0. In row n = 2, the parent node 2 has the first left child since 2 - 1 > 0. The tree begins: row [n] [0] 1 \ [1] _________2_________ / \ [2] 1 _____3_____ \ / \ [3] __2__ __2__ __4__ / \ / \ / \ [4] 1 3 1 3 3 5 \ / \ \ / \ / \ / \ [5] 2 2 4 2 2 4 2 4 4 6 .
Links
- Paolo Xausa, Table of n, a(n) for n = 0..13494 (rows 0..15 of the triangle, flattened).
Crossrefs
Programs
-
Mathematica
SubstitutionSystem[{1->{2},t_/;t>1:>{t-1,t+1}},{1},8] (* Paolo Xausa, Dec 23 2023 *)
-
Python
def A363718_rowlist(root,row): A = [[root]] for i in range(0,row): A.append([]) for j in range(0,len(A[i])): if A[i][j] != 1: A[i+1].append(A[i][j]-1) A[i+1].append(A[i][j]+1) return(A) A363718_rowlist(1, 8)
Comments