A089258
Transposed version of A080955: T(n,k) = A080955(k,n), n>=0, k>=-1.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 5, 6, 9, 1, 4, 10, 16, 24, 44, 1, 5, 17, 38, 65, 120, 265, 1, 6, 26, 78, 168, 326, 720, 1854, 1, 7, 37, 142, 393, 872, 1957, 5040, 14833, 1, 8, 50, 236, 824, 2208, 5296, 13700, 40320, 133496, 1, 9, 65, 366, 1569, 5144, 13977, 37200, 109601, 362880, 1334961
Offset: 0
n\k -1 0 1 2 3 4 5 6 ...
----------------------------------------------
0 | 1, 1, 1, 1, 1, 1, 1, 1, ...
1 | 0, 1, 2, 3, 4, 5, 6, 7, ...
2 | 1, 2, 5, 10, 17, 26, 37, 50, ...
3 | 2, 6, 16, 38, 78, 152, 236, 366, ...
4 | 9, 24, 65, 168, 393, 824, 1569, 2760, ...
...
-
(* Assuming offset (0, 0): *)
T[n_, k_] := Exp[k - 1] Gamma[n + 1, k - 1];
Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Dec 24 2021 *)
Edited and changed offset for k to -1 by
Max Alekseyev, Mar 08 2018
A263823
a(n) = n!*Sum_{k=0..n} Fibonacci(k-1)/k!, where Fibonacci(-1) = 1, Fibonacci(n) = A000045(n) for n>=0.
Original entry on oeis.org
1, 1, 3, 10, 42, 213, 1283, 8989, 71925, 647346, 6473494, 71208489, 854501957, 11108525585, 155519358423, 2332790376722, 37324646028162, 634518982479741, 11421341684636935, 217005492008104349, 4340109840162091161, 91142306643403921146, 2005130746154886276158
Offset: 0
For n = 3, a(3) = 3!*(Fibonacci(-1)/0! + Fibonacci(0)/1! + Fibonacci(1)/2! + Fibonacci(2)/3!) = 6*(1 + 0 + 1/2 + 1/6) = 10.
For n = 5, Gamma(5+1, phi)*exp(phi) = 120*sqrt(5) + 333 = 240*phi + 213, so a(5) = 213.
G.f. = 1 + x + 3*x^2 + 10*x^3 + 42*x^4 + 213*x^5 + 1283*x^6 + 8989*x^7 + 71925*x^8 + ...
-
Table[n! Sum[Fibonacci[k-1]/k!, {k, 0, n}], {n, 0, 22}]
Round@Table[(E^(1-GoldenRatio) GoldenRatio Gamma[n+1, 1-GoldenRatio] + E^GoldenRatio Gamma[n+1, GoldenRatio]/GoldenRatio)/Sqrt[5], {n, 0, 22}]
A327997
Triangle read by rows: coefficients of the polynomials given by KummerU(-n, 1 - n - x, 3).
Original entry on oeis.org
1, 3, 1, 9, 7, 1, 27, 38, 12, 1, 81, 192, 101, 18, 1, 243, 969, 755, 215, 25, 1, 729, 5115, 5494, 2205, 400, 33, 1, 2187, 29322, 40971, 21469, 5355, 679, 42, 1, 6561, 187992, 323658, 209356, 66619, 11452, 1078, 52, 1, 19683, 1370745, 2764926, 2111318, 813645, 176295, 22302, 1626, 63, 1
Offset: 0
The triangle starts:
1;
3, 1;
9, 7, 1;
27, 38, 12, 1;
81, 192, 101, 18, 1;
243, 969, 755, 215, 25, 1;
729, 5115, 5494, 2205, 400, 33, 1;
2187, 29322, 40971, 21469, 5355, 679, 42, 1;
6561, 187992, 323658, 209356, 66619, 11452, 1078, 52, 1;
19683, 1370745, 2764926, 2111318, 813645, 176295, 22302, 1626, 63, 1;
-
egf := exp(3*t)*(1-t)^(-x): ser := series(egf, t, 12): p := n -> coeff(ser, t, n):
seq(print(n!*seq(coeff(p(n), x, k), k=0..n)), n=0..9);
-
p [n_] := HypergeometricU[-n, 1 - n - x, 3];
Table[CoefficientList[p[n], x], {n, 0, 9}] // Flatten
-
T(n, k) = sum(j=k, n, 3^(n-j)*binomial(n, j)*abs(stirling(j, k, 1))); \\ Seiichi Manyama, Apr 19 2025
A346395
Expansion of e.g.f. -log(1 - x) * exp(3*x).
Original entry on oeis.org
0, 1, 7, 38, 192, 969, 5115, 29322, 187992, 1370745, 11392839, 107043606, 1122823944, 12989320785, 164040593067, 2243143392138, 32994768719376, 519229765892241, 8701862242296807, 154700700117472422, 2907409255935736752, 57588370882960384377, 1198954118077558162875
Offset: 0
-
nmax = 22; CoefficientList[Series[-Log[1 - x] Exp[3 x], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[3^k/((n - k) k!), {k, 0, n - 1}], {n, 0, 22}]
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(i+2)*v[i]-3*(i-1)*v[i-1]+3^(i-1)); v; \\ Seiichi Manyama, May 27 2022
A217629
Triangle, read by rows, where T(n,k) = k!*C(n, k)*3^(n-k) for n>=0, k=0..n.
Original entry on oeis.org
1, 3, 1, 9, 6, 2, 27, 27, 18, 6, 81, 108, 108, 72, 24, 243, 405, 540, 540, 360, 120, 729, 1458, 2430, 3240, 3240, 2160, 720, 2187, 5103, 10206, 17010, 22680, 22680, 15120, 5040, 6561, 17496, 40824, 81648, 136080, 181440, 181440, 120960, 40320
Offset: 0
Triangle begins:
1;
3, 1;
9, 6, 2;
27, 27, 18, 6;
81, 108, 108, 72, 24;
243, 405, 540, 540, 360, 120;
729, 1458, 2430, 3240, 3240, 2160, 720;
2187, 5103, 10206, 17010, 22680, 22680, 15120, 5040;
6561, 17496, 40824, 81648, 136080, 181440, 181440, 120960, 40320; etc.
-
[Factorial(n)/Factorial(n-k)*3^(n-k): k in [0..n], n in [0..10]];
-
Flatten[Table[n!/(n-k)!*3^(n-k), {n, 0, 10}, {k, 0, n}]]
A108869
E.g.f. : exp(6x)/(1-x).
Original entry on oeis.org
1, 7, 50, 366, 2760, 21576, 176112, 1512720, 13781376, 134110080, 1401566976, 15780033792, 191537187840, 2503044135936, 35120982067200, 527284915992576, 8439379765788672, 143486382677852160, 2582856448158007296
Offset: 0
-
a:=n->n!*sum(6^k/k!,k=0..n): seq(a(n),n=0..20); # Emeric Deutsch, Jul 18 2005
restart:F(x):=exp(6*x)/(1-x): f[0]:=F(x): for n from 1 to 20 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..18); # Zerinvary Lajos, Apr 03 2009
-
a[n_] := n! * Sum[6^k/k!, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Jun 30 2020 *)
A111139
a(n) = n!*Sum_{k=0..n} Fibonacci(k)/k!.
Original entry on oeis.org
0, 1, 3, 11, 47, 240, 1448, 10149, 81213, 730951, 7309565, 80405304, 964863792, 12543229529, 175605213783, 2634078207355, 42145251318667, 716469272418936, 12896446903543432, 245032491167329389, 4900649823346594545
Offset: 0
-
a:=n->sum(fibonacci (j)*n!/j!,j=0..n):seq(a(n),n=0..20); # Zerinvary Lajos, Mar 19 2007
-
f[n_] := n!*Sum[Fibonacci[k]/k!, {k, 0, n}]; Table[ f[n], {n, 0, 20}] (* or *)
Simplify[ Range[0, 20]!CoefficientList[ Series[2/Sqrt[5]*Exp[x/2]*Sinh[Sqrt[5]*x/2]/(1 - x), {x, 0, 20}], x]] (* Robert G. Wilson v, Oct 21 2005 *)
Module[{nn=20,fibs,fct},fct=Range[0,nn]!;fibs=Accumulate[ Fibonacci[ Range[ 0,nn]]/fct];Times@@@Thread[{fct,fibs}]] (* Harvey P. Dale, Feb 19 2014 *)
Round@Table[(E^GoldenRatio Gamma[n+1, GoldenRatio] - E^(1-GoldenRatio) Gamma[n+1, 1-GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 27 2015 *)
-
vector(100, n, n--; n!*sum(k=0, n, fibonacci(k)/k!)) \\ Altug Alkan, Oct 28 2015
A336998
a(n) = n! * Sum_{d|n} 3^(d - 1) / d!.
Original entry on oeis.org
1, 5, 15, 87, 201, 3123, 5769, 148347, 913761, 11541123, 39975849, 2616723387, 6227552241, 230557039443, 4151870901369, 76980002233707, 355687471142721, 27886053280896963, 121645100796252489, 10474674957482235867, 135117295282596928401, 2811664555920692775603
Offset: 1
-
A336998:= func< n | Factorial(n)*(&+[3^(d-1)/Factorial(d): d in Divisors(n)]) >;
[A336998(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
Table[n! Sum[3^(d - 1)/d!, {d, Divisors[n]}], {n, 1, 22}]
nmax = 22; CoefficientList[Series[Sum[(Exp[3 x^k] - 1)/3, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
-
a(n) = n! * sumdiv(n, d, 3^(d-1)/d!); \\ Michel Marcus, Aug 12 2020
-
def A336998(n): return factorial(n)*sum(3^(k-1)/factorial(k) for k in (1..n) if (k).divides(n))
[A336998(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
A343686
a(0) = 1; a(n) = 3 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
Original entry on oeis.org
1, 4, 33, 410, 6796, 140824, 3501782, 101589732, 3368237928, 125634319104, 5206805098752, 237370661584704, 11805144854303760, 636030155604374400, 36903603627294958416, 2294156656214759133024, 152126925169297299197184, 10718105879980375520103936, 799564645068022035991527552
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 3 n a[n - 1] + Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[1/(1 - 3 x + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
A296661
a(n) = (exp(k)*Gamma(1+n, k) - exp(-k)*Gamma(1+n, -k))/k! for k = 3.
Original entry on oeis.org
0, 1, 2, 15, 60, 381, 2286, 16731, 133848, 1211193, 12111930, 133290279, 1599483348, 20793814965, 291113409510, 4366705925619, 69867294809904, 1187744054815089, 21379392986671602, 406208467134180927, 8124169342683618540
Offset: 0
-
A296661 := n -> (exp(3)*GAMMA(1+n,3) - exp(-3)*GAMMA(1+n,-3))/6:
seq(simplify(A296661(n)), n=0..20);
Comments