A028365
Order of general affine group over GF(2), AGL(n,2).
Original entry on oeis.org
1, 2, 24, 1344, 322560, 319979520, 1290157424640, 20972799094947840, 1369104324918194995200, 358201502736997192984166400, 375234700595146883504949480652800, 1573079924978208093254925489963584716800
Offset: 0
- J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 54 (1.64).
- Seiichi Manyama, Table of n, a(n) for n = 0..57
- Abdalla G. M. Ahmed, Matt Pharr, Victor Ostromoukhov, and Hui Huang, SZ Sequences: Binary-Based (0, 2^q)-Sequences, arXiv:2505.20434 [cs.GR], 2025. See p. 7.
- Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
- Putnam Competition 1999, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
- I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
-
[1] cat [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 31 2023
-
A028365 := n->2^n*product(2^n-2^'i','i'=0..n-1); # version 1
A028365 := n->product(2^'j'-1,'j'=1..n)*2^binomial(n+1,2); # version 2
-
RecurrenceTable[{a[1]==1, a[2]==2, a[3]==24, a[n]==(6a[n-1]^2 a[n-3] - 8a[n-1] a[n-2]^2)/(a[n-2] a[n-3])}, a[n], {n,20}] (* Harvey P. Dale, Aug 03 2011 *)
(* Next, the connection with Vandermonde determinants *)
f[j_]:= 2^j - 1; z = 15;
v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
Table[v[n], {n,z}] (* A203303 *)
Table[v[n+1]/v[n], {n,z}] (* A028365 *)
Table[v[n]*v[n+2]/(2*v[n+1])^2, {n,z}] (* A171499 *) (* Clark Kimberling, Jan 01 2011 *)
Table[(-1)^n*2^Binomial[n+1,2]*QPochhammer[2,2,n], {n,0,20}] (* G. C. Greubel, Aug 31 2023 *)
-
a(n)=if(n<0,0,prod(k=1,n,2^k-1)*2^((n^2+n)/2)) /* Michael Somos, May 09 2005 */
-
[product(2^(n+1) - 2^(k+1) for k in range(n)) for n in range(21)] # G. C. Greubel, Aug 31 2023
A088389
Number of real regular n X n (0,1) matrices modulo rows permutations.
Original entry on oeis.org
1, 1, 3, 29, 940, 104286, 40050850, 53640013886, 251995529844792
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 08 2003
a(8) from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
A270880
Triangle read by rows: T(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2).
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 28, 28, 0, 1, 400, 1680, 840, 0, 1, 10416, 168640, 277760, 83328, 0, 1, 525792, 36053248, 159989760, 139991040, 27998208, 0, 1, 51116992, 17811244032, 209056841728, 419919790080, 227569434624, 32509919232
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 3;
0, 1, 28, 28;
0, 1, 400, 1680, 840;
0, 1, 10416, 168640, 277760, 83328;
...
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- David Ellerman, The number of direct-sum decompositions of a finite vector space, arXiv:1603.07619 [math.CO], 2016.
- David Ellerman, The Quantum Logic of Direct-Sum Decompositions, arXiv preprint arXiv:1604.01087 [quant-ph], 2016. See Section 7.5.
-
g[n_] := q^Binomial[n, 2] *FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2;Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {m}]]], {m, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, May 18 2017 *)
A377642
a(n) = (1/(n-1)!) * Product_{i=1..n-1} (2^n-2^i).
Original entry on oeis.org
1, 2, 12, 224, 13440, 2666496, 1791885312, 4161269661696, 33955960439439360, 987107315743488737280, 103404624282172311371513856, 39408968779516596852827017445376, 55084280201257118417007491904448757760, 284322478318511376197290687371005495020093440
Offset: 1
Appears to be main diagonal of
A270882.
-
Table[Product[2^n - 2^i, {i, 1, n - 1}]/Factorial[n - 1], {n, 1, 20}]
-
a(n)=prod(i=1, n-1, 2^n-2^i)/(n-1)! \\ Andrew Howroyd, Nov 10 2024
A088437
Number of n X n orthogonal matrices over GF(2) modulo permutations of rows.
Original entry on oeis.org
1, 1, 1, 2, 6, 32, 288, 4608, 130560, 6684672, 621674496, 106099113984, 33421220904960, 19556188689530880, 21359269286705627136, 43743783499173124374528, 168632285389312394463805440, 1227942828363775231508883701760, 16941927202935006869128068433182720, 444122456468619444070070837134825095168
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 09 2003
-
/* based on http://home.gwu.edu/~maxal/gpscripts/nsdb.gp by Max Alekseyev */
sd(m,q) =
/* Number of distinct self-dual bases of GF(q^m) over GF(q) where q is a power of prime */
{
if ( q%2 && !(m%2), return(0) );
return ( (q%2 + 1) * prod(i=1,m-1, q^i - (i+1)%2) / m! );
}
vector(66, n, sd(n,2)) /* Joerg Arndt, Jul 03 2011 */
A258745
Order of general affine group AGL(n,2) (=A028365(n)) divided by (n+1).
Original entry on oeis.org
1, 1, 8, 336, 64512, 53329920, 184308203520, 2621599886868480, 152122702768688332800, 35820150273699719298416640, 34112245508649716682268134604800, 131089993748184007771243790830298726400, 2029650642403883210241235064170615545004032000
Offset: 0
- Max Alekseyev, Table of n, a(n) for n = 0..100
- Abdalla G. M. Ahmed, Matt Pharr, Victor Ostromoukhov, and Hui Huang, SZ Sequences: Binary-Based (0, 2^q)-Sequences, arXiv:2505.20434 [cs.GR], 2025. See pp. 7, 12.
- Putnam Exam. 1999, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
A298561
Triangle read by rows. T(n,k) is the number of direct sum decompositions of GF(2)^n into subspaces of dimension at most k, 1<=k<=n.
Original entry on oeis.org
1, 3, 4, 28, 56, 57, 840, 2800, 2920, 2921, 83328, 499968, 539648, 540144, 540145, 27998208, 323534848, 363889408, 364556032, 364558048, 364558049, 32509919232, 765789208576, 904149876736, 906907414528, 906918338560, 906918346688, 906918346689
Offset: 1
1
3, 4,
28, 56, 57,
840, 2800, 2920, 2921,
83328, 499968, 539648, 540144, 540145,
-
nn = 7; \[Gamma][n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2; Flatten[Table[Table[Transpose[
Map[Drop[#, 1] &,Table[Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[Exp[Sum[z^i/\[Gamma][i], {i, 1, k}]], {z, 0, nn}],z], {k, 1, nn}]]][[j, k]], {k, 1, j}], {j, 1, nn}]]
A372230
Triangular array read by rows. T(n,k) is the number of size k circuits in the linear matroid M[A] where A is the n X 2^n-1 matrix whose columns are the nonzero vectors in GF(2)^n, n>=2, 3<=k<=n+1.
Original entry on oeis.org
1, 7, 7, 35, 105, 168, 155, 1085, 5208, 13888, 651, 9765, 109368, 874944, 3999744, 2667, 82677, 1984248, 37039296, 507967488, 4063739904, 10795, 680085, 33732216, 1349288640, 43177236480, 1036253675520, 14737830051840
Offset: 2
Triangle begins ...
1;
7, 7;
35, 105, 168;
155, 1085, 5208, 13888;
651, 9765, 109368, 874944, 3999744;
2667, 82677, 1984248, 37039296, 507967488, 4063739904;
...
- J. Oxley, Matroid Theory, Oxford Graduate Texts in Mathematics, 1992, page 8.
-
nn = 8; Map[Select[#, # > 0 &] &, Table[Table[PadRight[Table[Product[(2^n - 2^i)/(2^k - 2^i), {i, 0, k - 1}], {k, 2, n}], nn], {n, 2, nn}][[All, j]]* Table[Product[2^n - 2^i, {i, 0, n - 1}]/(n + 1)!, {n, 2, nn}][[j]], {j, 1, nn - 1}] // Transpose] // Grid
A053995
Bases of n-dimensional vector space over GF(3).
Original entry on oeis.org
1, 2, 24, 1872, 1010880, 3963053952, 116846682720768, 26600881786245651456, 47704425342545776582103040, 684471586202557775548246032261120, 79552147744537053441626504660608566263808, 75648987817302293231984664268437958161057494925312
Offset: 0
A053996
Number of bases of n-dimensional vector space over GF(4).
Original entry on oeis.org
1, 3, 90, 30240, 123379200, 6462306385920, 4516376686991769600, 43295772825884473845350400, 5810971590951606258595918774272000, 11092372326294974332542866301794421571584000
Offset: 0
Showing 1-10 of 14 results.
Comments