cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A028365 Order of general affine group over GF(2), AGL(n,2).

Original entry on oeis.org

1, 2, 24, 1344, 322560, 319979520, 1290157424640, 20972799094947840, 1369104324918194995200, 358201502736997192984166400, 375234700595146883504949480652800, 1573079924978208093254925489963584716800
Offset: 0

Views

Author

Keywords

Comments

For n > 0, a(n) = v(n+1)/v(n), where v = A203305 is the Vandermonde determinant of the first n of the numbers -2^j - 1; see the Mathematica section. - Clark Kimberling, Jan 01 2012

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 54 (1.64).

Crossrefs

Programs

  • Magma
    [1] cat [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 31 2023
    
  • Maple
    A028365 := n->2^n*product(2^n-2^'i','i'=0..n-1); # version 1
    A028365 := n->product(2^'j'-1,'j'=1..n)*2^binomial(n+1,2); # version 2
  • Mathematica
    RecurrenceTable[{a[1]==1, a[2]==2, a[3]==24, a[n]==(6a[n-1]^2 a[n-3] - 8a[n-1] a[n-2]^2)/(a[n-2] a[n-3])}, a[n], {n,20}] (* Harvey P. Dale, Aug 03 2011 *)
    (* Next, the connection with Vandermonde determinants *)
    f[j_]:= 2^j - 1; z = 15;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]   (* A203303 *)
    Table[v[n+1]/v[n], {n,z}]  (* A028365 *)
    Table[v[n]*v[n+2]/(2*v[n+1])^2, {n,z}]  (* A171499 *) (* Clark Kimberling, Jan 01 2011 *)
    Table[(-1)^n*2^Binomial[n+1,2]*QPochhammer[2,2,n], {n,0,20}] (* G. C. Greubel, Aug 31 2023 *)
  • PARI
    a(n)=if(n<0,0,prod(k=1,n,2^k-1)*2^((n^2+n)/2)) /* Michael Somos, May 09 2005 */
    
  • SageMath
    [product(2^(n+1) - 2^(k+1) for k in range(n)) for n in range(21)] # G. C. Greubel, Aug 31 2023

Formula

a(n) is asymptotic to C*2^(n*(n+1)) where C = 0.288788095086602421278899721... = prod(k>=1, 1-1/2^k) (cf. A048651). - Benoit Cloitre, Apr 11 2003
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)). [From Putman Exam]. - Max Alekseyev, May 18 2007
a(n) = 2*A203305(n), n > 0. - Clark Kimberling, Jan 01 2012
From Max Alekseyev, Jun 09 2015: (Start)
a(n) = 2^A000217(n) * A005329(n).
a(n) = 2^n * A002884(n).
a(n) = 2^n * n! * A053601(n). (End)
From G. C. Greubel, Aug 31 2023: (Start)
a(n) = Product_{j=0..n-1} (2^(n+1) - 2^(j+1)).
a(n) = (-1)^n * 2^binomial(n+1,2) * QPochhammer(2,2,n). (End)

A088389 Number of real regular n X n (0,1) matrices modulo rows permutations.

Original entry on oeis.org

1, 1, 3, 29, 940, 104286, 40050850, 53640013886, 251995529844792
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 08 2003

Keywords

Crossrefs

Formula

a(n) = A055165(n) / n!.

Extensions

a(8) from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
a(0)=1 prepended by Alois P. Heinz, Jun 18 2022

A270880 Triangle read by rows: T(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2).

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 28, 28, 0, 1, 400, 1680, 840, 0, 1, 10416, 168640, 277760, 83328, 0, 1, 525792, 36053248, 159989760, 139991040, 27998208, 0, 1, 51116992, 17811244032, 209056841728, 419919790080, 227569434624, 32509919232
Offset: 0

Views

Author

Michel Marcus, Mar 25 2016

Keywords

Examples

			Triangle begins:
1;
0, 1;
0, 1, 3;
0, 1, 28, 28;
0, 1, 400, 1680, 840;
0, 1, 10416, 168640, 277760, 83328;
...
		

Crossrefs

Cf. A053601 (right diagonal), A270881 (row sums), A270882.

Programs

  • Mathematica
    g[n_] := q^Binomial[n, 2] *FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2;Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {m}]]], {m, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, May 18 2017 *)

Formula

T(n,m) = Sum_ g(n)/(g(n_1)*g(n_2)***g(n_m))/(a_1!*a_2!***a_n!) where the sum is over all partitions of n into m parts and a_1,a_2,...,a_n is the part count signature of the partition and g(n) = A002884(n). - Geoffrey Critzer, May 18 2017 (after formula given in first Ellerman link above).

A377642 a(n) = (1/(n-1)!) * Product_{i=1..n-1} (2^n-2^i).

Original entry on oeis.org

1, 2, 12, 224, 13440, 2666496, 1791885312, 4161269661696, 33955960439439360, 987107315743488737280, 103404624282172311371513856, 39408968779516596852827017445376, 55084280201257118417007491904448757760, 284322478318511376197290687371005495020093440
Offset: 1

Views

Author

Nikita Babich, Nov 05 2024

Keywords

Crossrefs

Appears to be main diagonal of A270882.

Programs

  • Mathematica
    Table[Product[2^n - 2^i, {i, 1, n - 1}]/Factorial[n - 1], {n, 1, 20}]
  • PARI
    a(n)=prod(i=1, n-1, 2^n-2^i)/(n-1)! \\ Andrew Howroyd, Nov 10 2024

Formula

a(n) = (Product_{i=1..n-1}(2^n-2^i))/((n-1)!).
a(n) = A028365(n-1)/A000142(n-1).
a(n) = A000079(n-1) * A053601(n-1).
a(n) ~ A048651 * 2^(n*(n-1)) / (n-1)!. - Vaclav Kotesovec, Nov 13 2024

A088437 Number of n X n orthogonal matrices over GF(2) modulo permutations of rows.

Original entry on oeis.org

1, 1, 1, 2, 6, 32, 288, 4608, 130560, 6684672, 621674496, 106099113984, 33421220904960, 19556188689530880, 21359269286705627136, 43743783499173124374528, 168632285389312394463805440, 1227942828363775231508883701760, 16941927202935006869128068433182720, 444122456468619444070070837134825095168
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 09 2003

Keywords

Comments

Also the number of distinct self-dual bases for GF(2^n) over GF(2). - Max Alekseyev, Feb 11 2008

Crossrefs

Programs

  • PARI
    /* based on http://home.gwu.edu/~maxal/gpscripts/nsdb.gp by Max Alekseyev */
    sd(m,q) =
    /* Number of distinct self-dual bases of GF(q^m) over GF(q) where q is a power of prime */
    {
       if ( q%2 && !(m%2), return(0) );
       return ( (q%2 + 1) * prod(i=1,m-1, q^i - (i+1)%2) / m! );
    }
    vector(66, n, sd(n,2)) /* Joerg Arndt, Jul 03 2011 */

Formula

a(n) = A003053(n) / n!.

Extensions

More terms from Max Alekseyev, Feb 11 2008

A258745 Order of general affine group AGL(n,2) (=A028365(n)) divided by (n+1).

Original entry on oeis.org

1, 1, 8, 336, 64512, 53329920, 184308203520, 2621599886868480, 152122702768688332800, 35820150273699719298416640, 34112245508649716682268134604800, 131089993748184007771243790830298726400, 2029650642403883210241235064170615545004032000
Offset: 0

Views

Author

Max Alekseyev, Jun 08 2015

Keywords

Formula

a(n) = A028365(n) / (n+1) = 2^n * A002884(n) / (n+1) = 2^n * n! * A053601(n) / (n+1).

A298561 Triangle read by rows. T(n,k) is the number of direct sum decompositions of GF(2)^n into subspaces of dimension at most k, 1<=k<=n.

Original entry on oeis.org

1, 3, 4, 28, 56, 57, 840, 2800, 2920, 2921, 83328, 499968, 539648, 540144, 540145, 27998208, 323534848, 363889408, 364556032, 364558048, 364558049, 32509919232, 765789208576, 904149876736, 906907414528, 906918338560, 906918346688, 906918346689
Offset: 1

Views

Author

Geoffrey Critzer, Jan 21 2018

Keywords

Examples

			  1
  3,     4,
  28,    56,     57,
  840,   2800,   2920,   2921,
  83328, 499968, 539648, 540144, 540145,
		

Crossrefs

Cf. A270881 (main diagonal), A053601 (column 1), A298339.

Programs

  • Mathematica
    nn = 7; \[Gamma][n_] := (q - 1)^n  q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2; Flatten[Table[Table[Transpose[
         Map[Drop[#, 1] &,Table[Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[Exp[Sum[z^i/\[Gamma][i], {i, 1, k}]], {z, 0, nn}],z], {k, 1, nn}]]][[j, k]], {k, 1, j}], {j, 1, nn}]]

Formula

exp(Sum_{j=0...k} x^j/A002884(j)) = Sum_{n>=0} T(n,k)/A002884(n)*x^n.

A372230 Triangular array read by rows. T(n,k) is the number of size k circuits in the linear matroid M[A] where A is the n X 2^n-1 matrix whose columns are the nonzero vectors in GF(2)^n, n>=2, 3<=k<=n+1.

Original entry on oeis.org

1, 7, 7, 35, 105, 168, 155, 1085, 5208, 13888, 651, 9765, 109368, 874944, 3999744, 2667, 82677, 1984248, 37039296, 507967488, 4063739904, 10795, 680085, 33732216, 1349288640, 43177236480, 1036253675520, 14737830051840
Offset: 2

Views

Author

Geoffrey Critzer, Apr 28 2024

Keywords

Comments

For n>=2 and 3<=k<=n, to construct a size k circuit of M[A]: Choose a basis b_1,b_2,...,b_{k-1} of a k-1 dimensional subspace of GF(2)^n. Append the vector b_1 + b_2 + ... + b_{k-1}.

Examples

			Triangle begins ...
    1;
    7,    7;
   35,   105,     168;
  155,  1085,    5208,    13888;
  651,  9765,  109368,   874944,   3999744;
 2667, 82677, 1984248, 37039296, 507967488, 4063739904;
...
		

References

  • J. Oxley, Matroid Theory, Oxford Graduate Texts in Mathematics, 1992, page 8.

Crossrefs

Cf. A022166, A053601, A006095, A372350 (row sums).

Programs

  • Mathematica
    nn = 8; Map[Select[#, # > 0 &] &, Table[Table[PadRight[Table[Product[(2^n - 2^i)/(2^k - 2^i), {i, 0, k - 1}], {k, 2, n}], nn], {n, 2, nn}][[All, j]]*    Table[Product[2^n - 2^i, {i, 0, n - 1}]/(n + 1)!, {n, 2, nn}][[j]], {j, 1, nn - 1}] // Transpose] // Grid

Formula

T(n,k) = A022166(n,k-1)*A053601(k-1)/k.
T(n,3) = A006095.
T(n,n+1) = A053601(n)/(n+1).

A053995 Bases of n-dimensional vector space over GF(3).

Original entry on oeis.org

1, 2, 24, 1872, 1010880, 3963053952, 116846682720768, 26600881786245651456, 47704425342545776582103040, 684471586202557775548246032261120, 79552147744537053441626504660608566263808, 75648987817302293231984664268437958161057494925312
Offset: 0

Views

Author

Vladeta Jovovic, Apr 05 2000

Keywords

Crossrefs

Formula

a(n) = (3^n-1)(3^n-3)...(3^n-3^(n-1))/n!.
From Geoffrey Critzer, Sep 27 2022: (Start)
Sum_{n>=0} a(n)*x^n/A053290(n) = exp(x).
a(n) = A053290(n) / n!. (End)

A053996 Number of bases of n-dimensional vector space over GF(4).

Original entry on oeis.org

1, 3, 90, 30240, 123379200, 6462306385920, 4516376686991769600, 43295772825884473845350400, 5810971590951606258595918774272000, 11092372326294974332542866301794421571584000
Offset: 0

Views

Author

Vladeta Jovovic, Apr 05 2000

Keywords

Crossrefs

Formula

a(n)=(4^n - 1)(4^n - 4)...(4^n - 4^(n-1))/n!
Showing 1-10 of 14 results. Next