cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 91 results. Next

A284005 a(0) = 1, and for n > 1, a(n) = (1 + A000120(n))*a(floor(n/2)); also a(n) = A000005(A283477(n)).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 24, 16, 24, 36, 48, 54, 72, 96, 120, 32, 48, 72, 96, 108, 144, 192, 240, 162, 216, 288, 360, 384, 480, 600, 720, 64, 96, 144, 192, 216, 288, 384, 480, 324, 432, 576, 720, 768, 960, 1200, 1440, 486, 648, 864, 1080, 1152, 1440, 1800, 2160, 1536, 1920, 2400, 2880, 3000
Offset: 0

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Crossrefs

Similar recurrences: A124758, A243499, A329369, A341392.

Programs

  • Mathematica
    Table[DivisorSigma[0, #] &@ Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 71}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A284005(n) = numdiv(A283477(n)); \\ edited by Michel Marcus, May 01 2019, M. F. Hasler, Nov 10 2019
    
  • PARI
    a(n) = my(k=if(n,logint(n,2)),s=1); prod(i=0,k, s+=bittest(n,k-i)); \\ Kevin Ryde, Jan 20 2021
  • Scheme
    (define (A284005 n) (A000005 (A283477 n)))
    

Formula

a(n) = A000005(A283477(n)).
Conjecture: a(n) = 2*a(f(n)) + Sum_{k=0..floor(log_2(n))-1} a(f(n) + 2^k*(1 - T(n,k))) for n > 1 with a(0) = 1, a(1) = 2, f(n) = A053645(n), T(n,k) = floor(n/2^k) mod 2. - Mikhail Kurkov, Nov 10 2019
From Mikhail Kurkov, Aug 23 2021: (Start)
a(2n+1) = a(n) + a(2n) for n >= 0.
a(2n) = a(n) + a(2n - 2^A007814(n)) for n > 0 with a(0) = 1. (End)
Conjecture: a(n) = Sum_{k=0..n} (binomial(n, k) mod 2)*A329369(k). In other words, this sequence is modulo 2 binomial transform of A329369. - Mikhail Kurkov, Mar 10 2023
Conjecture: a(2^m*(2n+1)) = Sum_{k=0..m+1} binomial(m+1, k)*a(2^k*n) for m >= 0, n >= 0 with a(0) = 1. - Mikhail Kurkov, Apr 24 2023

Extensions

Made Mikhail Kurkov's Nov 10 2019 formula the new primary name of this sequence - Antti Karttunen, Dec 30 2020

A062050 n-th chunk consists of the numbers 1, ..., 2^n.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
Offset: 1

Views

Author

Marc LeBrun, Jun 30 2001

Keywords

Comments

a(k) is the distance between k and the largest power of 2 not exceeding k, where k = n + 1. [Consider the sequence of even numbers <= k; after sending the first term to the last position delete all odd-indexed terms; the final term that remains after iterating the process is the a(k)-th even number.] - Lekraj Beedassy, May 26 2005
Triangle read by rows in which row n lists the first 2^(n-1) positive integers, n >= 1; see the example. - Omar E. Pol, Sep 10 2013

Examples

			From _Omar E. Pol_, Aug 31 2013: (Start)
Written as irregular triangle with row lengths A000079:
  1;
  1, 2;
  1, 2, 3, 4;
  1, 2, 3, 4, 5, 6, 7, 8;
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
  ...
Row sums give A007582.
(End)
		

Crossrefs

Programs

  • Haskell
    a062050 n = if n < 2 then n else 2 * a062050 n' + m - 1
                where (n',m) = divMod n 2
    -- Reinhard Zumkeller, May 07 2012
    
  • Maple
    A062050 := proc(n) option remember; if n < 4 then return [1, 1, 2][n] fi;
    2*A062050(floor(n/2)) + irem(n,2) - 1 end:
    seq(A062050(n), n=1..89); # Peter Luschny, Apr 27 2020
  • Mathematica
    Flatten[Table[Range[2^n],{n,0,6}]] (* Harvey P. Dale, Oct 12 2015 *)
  • PARI
    a(n)=floor(n+1-2^logint(n,2))
    
  • PARI
    a(n)= n - 1<Ruud H.G. van Tol, Dec 13 2024
    
  • Python
    def A062050(n): return n-(1<Chai Wah Wu, Jan 22 2023

Formula

a(n) = A053645(n) + 1.
a(n) = n - msb(n) + 1 (where msb(n) = A053644(n)).
a(n) = 1 + n - 2^floor(log(n)/log(2)). - Benoit Cloitre, Feb 06 2003; corrected by Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 25 2008
G.f.: 1/(1-x) * ((1-x+x^2)/(1-x) - Sum_{k>=1} 2^(k-1)*x^(2^k)). - Ralf Stephan, Apr 18 2003
a(1) = 1, a(2*n) = 2*a(n) - 1, a(2*n+1) = 2*a(n). - Ralf Stephan, Oct 06 2003
A005836(a(n+1)) = A107681(n). - Reinhard Zumkeller, May 20 2005
a(n) = if n < 2 then n else 2*a(floor(n/2)) - 1 + n mod 2. - Reinhard Zumkeller, May 07 2012
Without the constant 1, Ralf Stephan's g.f. becomes A(x) = x/(1-x)^2 - (1/(1-x)) * Sum_{k>=1} 2^(k-1)*x^(2^k) and satisfies the functional equation A(x) - 2*(1+x)*A(x^2) = x*(1 - x - x^2)/(1 - x^2). - Petros Hadjicostas, Apr 27 2020
For n > 0: a(n) = (A006257(n) + 1) / 2. - Frank Hollstein, Oct 25 2021

A243499 Product of parts of integer partitions as enumerated in the table A125106.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 4, 3, 6, 2, 9, 4, 8, 1, 5, 4, 8, 3, 12, 6, 12, 2, 16, 9, 18, 4, 27, 8, 16, 1, 6, 5, 10, 4, 15, 8, 16, 3, 20, 12, 24, 6, 36, 12, 24, 2, 25, 16, 32, 9, 48, 18, 36, 4, 64, 27, 54, 8, 81, 16, 32, 1, 7, 6, 12, 5, 18, 10, 20, 4, 24, 15, 30, 8, 45, 16, 32, 3
Offset: 0

Views

Author

Antti Karttunen, Jun 28 2014

Keywords

Comments

This sequence and A341392 have the same set of values on intervals from 2^m to 2^(m+1) - 1 for m >= 0. - Mikhail Kurkov, Jun 18 2021 [verification needed]

Crossrefs

Cf. A125106, A161511 (gives the corresponding sums), A227184, A003963, A243504, A006068, A005940, A163511, A000110, A007814, A023416, A053645, A329369 (similar recurrence), A341392.

Programs

  • Scheme
    (define (A243499 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) p) ((even? n) (loop (/ n 2) (+ i 1) p)) (else (loop (/ (- n 1) 2) i (* p i))))))

Formula

Can also be obtained by mapping with an appropriate permutation from the products of parts of each partition computed for other enumerations similar to A125106:
a(n) = A227184(A006068(n)).
a(n) = A003963(A005940(n+1)).
a(n) = A243504(A163511(n)).
From Mikhail Kurkov, Jul 11 2021: (Start)
a(n) = (1 + A023416(n))*a(A053645(n)) for n > 0 with a(0) = 1.
a(2n+1) = a(n) for n >= 0.
a(2n) = A341392(2*A059894(n)) = a(n - 2^f(n)) + a(2n - 2^f(n)) = (2 + f(n))*a(n - 2^f(n)) for n > 0 with a(0)=1 where f(n) = A007814(n).
Sum_{k=0..2^n - 1} a(k) = A000110(n+1) for n >= 0.
a((4^n - 1)/3) = n! for n >= 0.
a(2^m*(2^n - 1)) = (m+1)^n for n >= 0, m >= 0. (End) [verification needed]

A341392 a(n) = A284005(n) / (1 + A000120(n))!.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 3, 1, 8, 4, 6, 2, 9, 3, 4, 1, 16, 8, 12, 4, 18, 6, 8, 2, 27, 9, 12, 3, 16, 4, 5, 1, 32, 16, 24, 8, 36, 12, 16, 4, 54, 18, 24, 6, 32, 8, 10, 2, 81, 27, 36, 9, 48, 12, 15, 3, 64, 16, 20, 4, 25, 5, 6, 1, 64, 32, 48, 16, 72, 24, 32, 8, 108, 36, 48, 12, 64, 16, 20, 4, 162, 54, 72, 18, 96, 24, 30, 6, 128
Offset: 0

Views

Author

Mikhail Kurkov, Feb 10 2021 [verification needed]

Keywords

Comments

From Antti Karttunen, Feb 10 2021: (Start)
This sequence can be represented as a binary tree. Each child to the left is obtained by multiplying its parent with (1+{binary weight of its breadth-first-wise index in the tree}), while each child to the right is just a clone of its parent:
1
|
...................1...................
2 1
4......../ \........2 3......../ \........1
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
8 4 6 2 9 3 4 1
16 8 12 4 18 6 8 2 27 9 12 3 16 4 5 1
etc.
(End)
This sequence and A243499 have the same set of values on intervals from 2^m to 2^(m+1) - 1 for m >= 0. - Mikhail Kurkov, Jun 18 2021 [verification needed]
FindStat provides a sequence of mappings between this sequence and A000110 starting from collection [Set partitions] (see Links section for illustration). - Mikhail Kurkov, May 20 2023 [verification needed]

Crossrefs

Cf. A000120, A000142, A007814, A036987, A053645, A243499, A284005, A329369 (similar recurrence).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          a(iquo(n, 2, 'd'))*`if`(d=1, 1, add(i, i=Bits[Split](n+1))))
        end:
    seq(a(n), n=0..120);  # Alois P. Heinz, Jun 23 2021
  • Mathematica
    Array[DivisorSigma[0, Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#1] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]]]/#2 & @@ {Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ #, (1 + Count[#, 1])!} &@ IntegerDigits[#, 2] &, 89, 0] (* Michael De Vlieger, Feb 24 2021 *)
  • PARI
    A284005(n) = { my(k=if(n, logint(n, 2)), s=1); prod(i=0, k, s+=bittest(n, k-i)); }; \\ From A284005
    A341392(n) = (A284005(n)/((1 + hammingweight(n))!)); \\ Antti Karttunen, Feb 10 2021
    
  • PARI
    A341392(n) = if(!n,1,if(n%2, A341392((n-1)/2), (1+hammingweight(n))*A341392(n/2))); \\ Antti Karttunen, Feb 10 2021

Formula

a(n) = A284005(n) / (1 + A000120(n))! = A284005(n) / A000142(1 + A000120(n)).
a(2n+1) = a(n) for n >= 0.
a(2n) = (1 + A000120(n))*a(n) = A243499(2*A059894(n)) = a(n) + a(2n - 2^A007814(n)) for n > 0 with a(0) = 1.
[2*a(n) - 1 = A329369(n)] = A036987(A053645(n)).
From Mikhail Kurkov, Apr 24 2023: (Start)
a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m, k)*a(2^k*n) for m >= 0, n >= 0 with a(0) = 1.
a(n) = a(f(n)) + Sum_{k=0..floor(log_2(n))-1} (1 - T(n, k))*a(f(n) + 2^k*(1 - T(n, k))) for n > 1 with a(0) = 1, a(1) = 1, where f(n) = A053645(n) and where T(n, k) = floor(n/2^k) mod 2. (End) [verification needed]

A063946 Write n in binary and complement second bit (from the left), with a(0)=0 and a(1)=1.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 4, 5, 12, 13, 14, 15, 8, 9, 10, 11, 24, 25, 26, 27, 28, 29, 30, 31, 16, 17, 18, 19, 20, 21, 22, 23, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 96, 97, 98, 99, 100, 101, 102
Offset: 0

Views

Author

Henry Bottomley, Sep 03 2001

Keywords

Comments

From Yosu Yurramendi, Mar 21 2017: (Start)
This sequence is a self-inverse permutation of the integers. Except for fixed points 0, 1, it consists completely of 2-cycles: (2^(m+1)+k, 2^(m+1)+2^m+k), m >= 0, 0 <= k < 2^m.
A071766(a(n)) = A229742(n), A229742(a(n)) = A071766(n), n > 0.
A245325(a(n)) = A245326(n), A245326(a(n)) = A245325(n), n > 0.
A065190(a(n)) = a(A065190(n)), n > 0.
A054429(a(n)) = a(A054429(n)) = A117120(n), n > 0.
A258746(a(n)) = a(A258746(n)), n > 0.
A258996(a(n)) = a(A258996(n)), n > 0. (End)
A324337(a(n)) = A324338(n), A324338(a(n)) = A324337(n), n > 0. - Yosu Yurramendi, Nov 04 2019

Examples

			a(11)=15 since 11 is written in binary as 1011, which changes to 1111, i.e., 15; a(12)=8 since 12 is written as 1100 which changes to 1000, i.e., 8.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
      if n<2 then n
    elif n<4 then 5-n
    elif `mod`(n,2)=0 then 2*a(n/2)
    else 2*a((n-1)/2) + 1
      fi; end proc;
    seq(a(n), n = 0..80); # G. C. Greubel, Dec 08 2019
  • Mathematica
    bc[n_]:=Module[{idn2=IntegerDigits[n,2]},If[idn2[[2]]==1,idn2[[2]]=0, idn2[[2]]=1];FromDigits[idn2,2]]; Join[{0,1},Array[bc,80,2]] (* Harvey P. Dale, May 31 2012 *)
    a[n_]:= a[n]= If[n<2, n, If[n<4, 5-n, If[EvenQ[n], 2*a[n/2], 2*a[(n-1)/2] +1]]];  Table[a[n], {n,0,80}] (* G. C. Greubel, Dec 08 2019 *)
  • PARI
    a(n)=if(n<2,n>0,3/2*2^floor(log(n)/log(2))-2^floor(log(4/3*n)/log(2))+n) /* Ralf Stephan */
    
  • PARI
    a(n) = if(n<2,n, bitxor(n, 1<<(logint(n,2)-1))); \\ Kevin Ryde, Apr 09 2020
    
  • Python
    import math
    def a(n): return n if n<2 else 3/2*2**int(math.floor(math.log(n)/math.log(2))) - 2**int(math.floor(math.log(4/3*n)/math.log(2))) + n # Indranil Ghosh, Mar 22 2017
    
  • R
    maxrow <- 8 # by choice
    b01 <- 1
    for(m in 0:(maxrow-1)){
      b01 <- c(b01,rep(0,2^(m+1))); b01[2^(m+1):(2^(m+1)+2^m-1)] <- 1
    }
    a <- c(1,3,2)
    for(m in 0:(maxrow-2))
      for(k in 0:(2^m-1)){
        a[2^(m+2) +                 k] <- a[2^(m+1) + 2^m + k] + 2^((m+1) + b01[2^(m+2) +                 k])
        a[2^(m+2) +         + 2^m + k] <- a[2^(m+1) +       k] + 2^((m+1) + b01[2^(m+2) +         + 2^m + k])
        a[2^(m+2) + 2^(m+1) +       k] <- a[2^(m+1) + 2^m + k] + 2^((m+1) + b01[2^(m+2) + 2^(m+1) +       k])
        a[2^(m+2) + 2^(m+1) + 2^m + k] <- a[2^(m+1) +       k] + 2^((m+1) + b01[2^(m+2) + 2^(m+1) + 2^m + k])
    }
    (a <- c(0,a))  # Yosu Yurramendi, Mar 30 2017
    
  • R
    a <- c(1,3,2)
    maxn <- 63 # by choice
    for(n in 2:maxn){ a[2*n  ] <- 2*a[n]
                      a[2*n+1] <- 2*a[n] + 1  }
    (a <- c(0,a))  # Yosu Yurramendi, Nov 12 2019
    
  • Sage
    @CachedFunction
    def a(n):
        if (n<2): return n
        elif (n<4): return 5-n
        elif (mod(n,2)==0): return 2*a(n/2)
        else: return 2*a((n-1)/2) + 1
    [a(n) for n in (0..80)] # G. C. Greubel, Dec 08 2019

Formula

If 2*2^k <= n < 3*2^k then a(n) = n + 2^k; if 3*2^k <= n < 4*2^k then a(n) = n - 2^k.
a(0)=0, a(1)=1, a(2)=3, a(3) = 2, a(2n) = 2*a(n), a(2n+1) = 2*a(n) + 1. - Ralf Stephan, Aug 23 2003

A295989 Irregular triangle T(n, k), read by rows, n >= 0 and 0 <= k < A001316(n): T(n, k) is the (k+1)-th nonnegative number m such that n AND m = m (where AND denotes the bitwise AND operator).

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 1, 2, 3, 0, 4, 0, 1, 4, 5, 0, 2, 4, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 8, 0, 1, 8, 9, 0, 2, 8, 10, 0, 1, 2, 3, 8, 9, 10, 11, 0, 4, 8, 12, 0, 1, 4, 5, 8, 9, 12, 13, 0, 2, 4, 6, 8, 10, 12, 14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0
Offset: 0

Views

Author

Rémy Sigrist, Dec 02 2017

Keywords

Comments

The (n+1)-th row has A001316(n) terms and sums to n * A001316(n) / 2.
For any n >= 0 and k such that 0 <= k < A001316(n):
- if A000120(n) > 0 then T(n, 1) = A006519(n),
- if A000120(n) > 1 then T(n, 2) = 2^A285099(n),
- if A000120(n) > 0 then T(n, A001316(n)/2 - 1) = A053645(n),
- if A000120(n) > 0 then T(n, A001316(n)/2) = 2^A000523(n),
- if A000120(n) > 0 then T(n, A001316(n) - 2) = A129760(n),
- T(n, A001316(n) - 1) = n,
- the six previous relations correspond respectively (when applicable) to the second term, the third term, the pair of central terms, the penultimate term and the last term of a row,
- T(n, k) AND T(n, A001316(n) - k - 1) = 0,
- T(n, k) + T(n, A001316(n) - k - 1) = n,
- T(n, k) = k for any k < A006519(n+1),
- A000120(T(n, k)) = A000120(k).
If we plot (n, T(n,k)) then we obtain a skewed Sierpinski triangle (see Links section).
If interpreted as a flat sequence a(n) for n >= 0:
- a(n) = 0 iff n = A006046(k) for some k >= 0,
- a(n) = 1 iff n = A006046(2*k + 1) + 1 for some k >= 0,
- a(A006046(k) - 1) = k - 1 for any k > 0.

Examples

			Triangle begins:
  0:   [0]
  1:   [0, 1]
  2:   [0, 2]
  3:   [0, 1, 2, 3]
  4:   [0, 4]
  5:   [0, 1, 4, 5]
  6:   [0, 2, 4, 6]
  7:   [0, 1, 2, 3, 4, 5, 6, 7]
  8:   [0, 8]
  9:   [0, 1, 8, 9]
  10:  [0, 2, 8, 10]
  11:  [0, 1, 2, 3, 8, 9, 10, 11]
  12:  [0, 4, 8, 12]
  13:  [0, 1, 4, 5, 8, 9, 12, 13]
  14:  [0, 2, 4, 6, 8, 10, 12, 14]
  15:  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
		

Crossrefs

First column of array in A352909.

Programs

  • Mathematica
    A295989row[n_] := Select[Range[0, n], BitAnd[#, n-#] == 0 &];
    Array[A295989row, 25, 0] (* Paolo Xausa, Feb 24 2024 *)
  • PARI
    T(n,k) = if (k==0, 0, n%2==0, 2*T(n\2,k), k%2==0, 2*T(n\2, k\2), 2*T(n\2, k\2)+1)

Formula

For any n >= 0 and k such that 0 <= k < A001316(n):
- T(n, 0) = 0,
- T(2*n, k) = 2*T(n, k),
- T(2*n+1, 2*k) = 2*T(n, k),
- T(2*n+1, 2*k+1) = 2*T(n, k) + 1.

A080541 In binary representation: keep the first digit and left-rotate the others.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15, 16, 18, 20, 22, 24, 26, 28, 30, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2003

Keywords

Comments

Permutation of natural numbers: let r(n,0)=n, r(n,k)=a(r(n,k-1)) for k>0, then r(n,floor(log_2(n))) = n and for n>1: r(n,floor(log_2(n))-1) = A080542(n).
Discarding their most significant bit, binary representations of numbers present in each cycle of this permutation form a distinct equivalence class of binary necklaces, thus there are A000031(n) separate cycles in each range [2^n .. (2^(n+1))-1] (for n >= 0) of this permutation. A256999 gives the largest number present in n's cycle. - Antti Karttunen, May 16 2015

Examples

			a(20)=a('10100')='11000'=24; a(24)=a('11000')='10001'=17.
		

Crossrefs

Inverse: A080542.
The set of permutations {A059893, A080541, A080542} generates an infinite dihedral group.

Programs

  • Maple
    f:= proc(n) local d;
       d:= ilog2(n);
       if n >= 3/2*2^d then 2*n+1-2^(d+1) else 2*n - 2^d fi
    end proc:
    map(f, [$1..100]); # Robert Israel, May 19 2015
  • Mathematica
    A080541[n_] := FromDigits[Join[{First[#]}, RotateLeft[Rest[#]]], 2] & [IntegerDigits[n, 2]];
    Array[A080541, 100] (* Paolo Xausa, May 13 2025 *)
  • Python
    def A080541(n): return ((n&(m:=1< 1 else n  # Chai Wah Wu, Jan 22 2023
  • R
    maxlevel <- 6 # by choice
    a <- 1:3
    for(m in 1:maxlevel) for(k in 0:(2^(m-1)-1)){
    a[2^(m+1)       + 2*k    ] = 2*a[2^m           + k]
    a[2^(m+1)       + 2*k + 1] = 2*a[2^m + 2^(m-1) + k]
    a[2^(m+1) + 2^m + 2*k    ] = 2*a[2^m           + k] + 1
    a[2^(m+1) + 2^m + 2*k + 1] = 2*a[2^m + 2^(m-1) + k] + 1
    }
    a
    # Yosu Yurramendi, Oct 12 2020
    
  • Scheme
    (define (A080541 n) (if (< n 2) n (A003986bi (A053644 n) (+ (* 2 (A053645 n)) (A079944off2 n))))) ;; A003986bi gives the bitwise OR of its two arguments. See A003986.
    ;; Where A079944off2 gives the second most significant bit of n. (Cf. A079944):
    (define (A079944off2 n) (A000035 (floor->exact (/ n (A072376 n)))))
    ;; Antti Karttunen, May 16 2015
    

Formula

From Antti Karttunen, May 16 2015: (Start)
a(1) = 1; for n > 1, a(n) = A053644(n) bitwise_OR (2*A053645(n) + second_most_significant_bit_of(n)). [Here bitwise_OR is a 2-argument function given by array A003986 and second_most_significant_bit_of gives the second most significant bit (0 or 1) of n larger than 1. See A079944.]
Other identities. For all n >= 1:
a(n) = A059893(A080542(A059893(n))).
a(n) = A054429(a(A054429(n))).
(End)
A080542(a(n)) = a(A080542(n)) = n. [A080542 is the inverse permutation.]
From Robert Israel, May 19 2015: (Start)
Let d = floor(log[2](n)). If n >= 3*2^(d-1) then a(n) = 2*n + 1 - 2^(d+1), otherwise a(n) = 2*n - 2^d.
G.f.: 2*x/(x-1)^2 + Sum_{n>=1} x^(2^n)+(2^n-1)*x^(3*2^(n-1)))/(x-1). (End)

A080542 In binary representation: keep the first digit and rotate right the others.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 12, 9, 13, 10, 14, 11, 15, 16, 24, 17, 25, 18, 26, 19, 27, 20, 28, 21, 29, 22, 30, 23, 31, 32, 48, 33, 49, 34, 50, 35, 51, 36, 52, 37, 53, 38, 54, 39, 55, 40, 56, 41, 57, 42, 58, 43, 59, 44, 60, 45, 61, 46, 62, 47, 63, 64, 96, 65, 97, 66, 98, 67, 99, 68
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2003

Keywords

Comments

Permutation of natural numbers with inverse = A080541: A080541(a(n)) = a(A080541(n)) = n;
let r(n,0)=n, r(n,k)=a(r(n,k-1)) for k>0, then r(n,floor(log_2(n))) = n and for n>1: r(n,floor(log_2(n))-1) = A080541(n).
Discarding their most significant bit, binary representations of numbers present in each cycle of this permutation form a distinct equivalence class of binary necklaces, thus there are A000031(n) separate cycles in each range [2^n .. (2^(n+1))-1] (for n >= 0) of this permutation. A256999 gives the largest number present in n's cycle. - Antti Karttunen, May 16 2015

Examples

			a(20) = a('10100') = '10010' = 18.
a(25) = a('11001') = '11100' = 28.
		

Crossrefs

Inverse: A080541.
The set of permutations {A059893, A080541, A080542} generates an infinite dihedral group.

Programs

  • Mathematica
    kfd[n_]:=Module[{a,b},{a,b}=TakeDrop[IntegerDigits[n,2],1];FromDigits[ Join[a,RotateRight[b]],2]]; Array[kfd,80] (* The program uses the TakeDrop function from Mathematica version 10 *) (* Harvey P. Dale, Feb 12 2016 *)
  • Python
    def A080542(n): return (1+(n&1))*(1<>1) if n > 1 else n # Chai Wah Wu, Jan 22 2023
  • R
    nmax <- 31 # by choice
    a <- 1:3
    for(n in 1:nmax) for(k in 0:3)
    a[4*n + k] = 2*a[2*n + (k == 1 | k == 3)] + (k == 2 | k == 3)
    a
    # Yosu Yurramendi, Sep 05 2020
    
  • Scheme
    (define (A080542 n) (if (< n 2) n (+ (A053644 n) (+ (* (A000035 n) (A072376 n)) (A004526 (A053645 n))))))  ;; Antti Karttunen, May 16 2015
    

Formula

a(n) = 2^log2(n) + floor((n-2^log2(n))/2) + (n mod 2)*2^(log2(n)-1), where log2(n) is the integer part of base-2 logarithm.
From Antti Karttunen, May 16 2015: (Start)
a(1) = 1; for n > 1, a(n) = A053644(n) + (A000035(n)*A072376(n)) + A004526(A053645(n)). [Essentially the same formula but represented with A-numbers.]
Other identities. For all n >= 1:
a(n) = A059893(A080541(A059893(n))).
a(n) = A054429(a(A054429(n))).
(End)

A257250 Numbers n for which A256999(n) = n; numbers that cannot be made any larger by rotating (by one or more steps) the non-msb bits of their binary representation (with A080541 or A080542).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 26, 28, 30, 31, 32, 48, 52, 56, 58, 60, 62, 63, 64, 96, 100, 104, 106, 112, 114, 116, 118, 120, 122, 124, 126, 127, 128, 192, 200, 208, 212, 224, 226, 228, 232, 234, 236, 240, 242, 244, 246, 248, 250, 252, 254, 255, 256, 384, 392, 400, 416, 420, 424, 426, 448, 450
Offset: 0

Views

Author

Antti Karttunen, May 16 2015

Keywords

Comments

These correspond to the maximal (lexicographically largest) representatives selected from each equivalence class of binary necklaces. See the last example.
Indexing starts from zero, because a(0) = 0 is a special case.
If k is a member then so also is 2*k, i.e., k with 0 appended to the end of its binary representation.
If k is a member then so also is A004755(k), i.e., k with 1 prepended to the front of its binary representation.
One obtains A065609 if one erases the most significant bit of each term [as A053645(a(n))] and then discards any zero-terms produced from the terms that originally were powers of two (A000079).
First differs from A328607 in lacking 108, with binary expansion 1101100. If we define a dual-necklace to be a finite sequence that is lexicographically maximal (not minimal) among all of its cyclic rotations, these are numbers whose binary expansion, without the most significant digit, is a dual-necklace. - Gus Wiseman, Nov 04 2019

Examples

			For n = 5, with binary representation "101", if we rotate other bits than the most significant bit (that is, only the two rightmost digits "01") one step to either direction, we get "110" = 6 > 5, so 5 can be made larger by such rotations, and thus is NOT included in this sequence.
For n = 6, with binary representation "110", no such rotation will yield a larger number, and thus 6 is included in this sequence.
For n = 28, with binary representation "11100", if we rotate non-msb bits towards right, we get additional numbers 22, 19 and 25 (with binary representations "10110", "10011", "11001") before coming to 28 again, and 28 is the largest of these numbers, thus 28 is included in this sequence.
  Also, if we discard the most significant bit of each and consider them just as binary strings, then A053645(28) = 12 is the lexicographically largest representative of {"1100", "0110", "0011", "1001"}, which is the complete set of representatives for a particular equivalence class of binary necklaces, obtained by rotating all bits of binary string "1100" successively towards right or left.
		

Crossrefs

Complement: A257739.
Odd terms: A000225.
Subsequence of A065609.
Subsequence: A258003.
The non-dual version is A328668.
The version involving all digits is A065609.
The non-dual reversed version is A328607.
Numbers whose reversed binary expansion is a necklace are A328595.
Binary necklaces are A000031.
Necklace compositions are A008965.

Programs

  • Mathematica
    reckQ[q_]:=Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And];
    Select[Range[0,110],#<=1||reckQ[Rest[IntegerDigits[#,2]]]&] (* Gus Wiseman, Nov 04 2019 *)

A056744 a(n) is the smallest number which when written in binary contains as substrings the binary expansions of 1..n.

Original entry on oeis.org

1, 2, 6, 12, 44, 44, 92, 184, 1208, 1256, 4792, 4792, 9912, 9912, 19832, 39664, 563952, 576464, 4496112, 4499184, 17996528, 17997488, 143972080, 143972080, 145057520, 145070832, 294967024, 294967024, 589944560, 589944560, 1179889136, 2359778272, 71079255008
Offset: 1

Views

Author

Fred J. Schalekamp, Aug 15 2000

Keywords

Comments

From Davis Smith, May 09 2021: (Start)
For n > 2, a(n) cannot be a power of 2.
If A007088(n) (the binary expansion of n) contains a string of k zeros, then it contains A007088(2^m), where 0 <= m <= k, as a substring. Similarly, if A007088(n) contains a string of k ones, then it contains A007088(2^m - 1), where 1 <= m <= k. Strings of zeros and ones are the most compact way to have powers of 2 and powers of 2 minus 1 (respectively) as substrings in a binary expansion. This means that A007088(a(n)) will contain a string of A000523(n) ones and a string of A000523(n) zeros. The binary expansion of a(2^k - 1) will contain a string of k ones and a string of k - 1 zeros.
Conjecture: a(n) == 0 (mod A053644(n)), i.e., A007088(a(n)) ends with the longest string of zeros. It follows from this that a(2^k) = 2*a(2^k - 1). A conjecture related to this is that a(2^k - 1) = 2*a(2^k - 2) + 2^(k - 1), i.e., A007088(a(2^k - 1)) ends with the longest string of ones followed by the longest string of zeros. Ending with the longest string of ones followed by the longest string of zeros is not true for all A007088(a(n)), as some have a hiccup before starting their string of zeros, e.g., a(10), a(18), a(22), and a(34).
Conjecture: a(2^k + 1) = 2^(k + floor(log_2(a(2^k)))) + a(2^k), i.e., concatenate the binary expansion of 2^(k - 1) to the front of the binary expansion of a(2^k) in order to get the binary expansion of a(2^k + 1).
(End)
All terms belong to A261467. - Rémy Sigrist, May 11 2021
From Jon E. Schoenfield, Jun 03 2021: (Start)
Conjecture: the binary expansion of a(n) contains exactly ceiling(n/2) 1's iff 2^m - 7 <= n <= 2^m + 6 for some integer m >= 3. (See Links.)
Conjecture: for n > 1, the binary expansion of a(n) begins with that of 2^floor(log_2(n-1)) + 1.(End)
From Davis Smith, Jun 05 2021: (Start)
For a proof that a(n) == 2^floor(log_2(n)) (mod 2^(floor(log_2(n)) + 1)), see my second link (not the b-file). This also proves the conjecture from May 09 2021 which states that it is congruent to 0 (mod A053644(n)). A proof for the related conjecture would likely rely on an explanation of values of n such that a(n) is not congruent to (2^floor(log_2(n)) - 1)*2^floor(log_2(n)) (mod 2^(2*floor(log_2(n)))), i.e. the values of n such that A007088(a(n)) does not end with a string of floor(log_2(n)) ones followed immediately by a string of floor(log_2(n)) zeros. A proof for Jon E. Schoenfield's second conjecture on Jun 03 2021 would satisfy my more restricted second conjecture and it may follow necessarily from my proof, assuming that A007088(a(n)) must begin with either A007088(2^floor(log_2(n - 1)) + 1) or A007088(2^floor(log_2(n))). (End)

Examples

			a(6)=44 because 101100 (44 in base 2) is the smallest number that contains 1, 10, 11, 100, 101 and 110 (1 through 6 in base 2).
Terms begin as follows (see Links for a longer table):
.
                a(n)
      =========================
   n  decimal      binary
  --  -------  ----------------
   1        1                 1
   2        2                10
   3        6               110
   4       12              1100
   5       44            101100
   6       44            101100
   7       92           1011100
   8      184          10111000
   9     1208       10010111000
  10     1256       10011101000
  11     4792     1001010111000
  12     4792     1001010111000
  13     9912    10011010111000
  14     9912    10011010111000
  15    19832   100110101111000
  16    39664  1001101011110000
		

Crossrefs

Programs

  • PARI
    A056744_vec(n)={
        my(
            L=List([1]),x=L[#L],Z=n+#L,B=binary(x),
            A=setbinop((y,z)->fromdigits(B[y..z],2),[1..#B])
        );
        while(#Lfromdigits(B[y..z],2),[1..#B]));listput(L,x));Vec(L)
    } \\ Davis Smith, May 09 2021

Formula

A144016(a(n)) >= n. - Rémy Sigrist, May 11 2021

Extensions

More terms from Naohiro Nomoto, Jul 20 2001
a(25)-a(31) from Ray Chandler, Nov 06 2008
a(32) from Davis Smith, May 10 2021
a(33) from Jon E. Schoenfield, May 11 2021
Previous Showing 31-40 of 91 results. Next