cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A269838 a(1)=1, then a(n) is the smallest unused multiple of a(A062050(n-1)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 12, 16, 15, 18, 27, 24, 11, 14, 21, 20, 25, 30, 36, 32, 28, 40, 48, 64, 45, 54, 81, 72, 13, 22, 33, 44, 35, 42, 63, 56, 49, 50, 60, 80, 75, 90, 108, 96, 55, 70, 84, 100, 125, 120, 144, 128, 112, 160, 192, 256, 135, 162, 243, 216, 17
Offset: 1

Views

Author

Ivan Neretin, Mar 06 2016

Keywords

Comments

A permutation of positive integers.
Alternative construction: start with the infinite sequence of all 1s, at step n look up the value of the term at n'th place (k), and if it has been used before, find the smallest unused multiple of k (m*k), find all occurrences of k in the sequence (there are going to be infinitely many), and change every second of them to m*k (see Example).

Examples

			Start with
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
At step 1, do nothing.
At step 2, change every second 1 to 2.
2: 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
At step 3, change every other remaining 1 to 3.
3: 1 2 3 2 1 2 3 2 1 2 3 2 1 2 3 2
At step 4, change every other 2 to 4.
4: 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
And so on.
5: 1 2 3 4 5 2 3 4 1 2 3 4 5 2 3 4
6: 1 2 3 4 5 6 3 4 1 2 3 4 5 6 3 4
7: 1 2 3 4 5 6 9 4 1 2 3 4 5 6 9 4
8: 1 2 3 4 5 6 9 8 1 2 3 4 5 6 9 8
9: 1 2 3 4 5 6 9 8 7 2 3 4 5 6 9 8
...
		

Programs

  • Mathematica
    Fold[Append[#1, Min@Complement[Range[Max@#1 + 1]*#1[[#2 - 2^Floor@Log2[#2 - 1]]], #1]] &, {1}, Range[2, 65]] (* Ivan Neretin, Mar 06 2016 *)

A006257 Josephus problem: a(2*n) = 2*a(n)-1, a(2*n+1) = 2*a(n)+1.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 5, 7, 1, 3, 5, 7, 9, 11, 13, 15, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29
Offset: 0

Views

Author

Keywords

Comments

Write the numbers 1 through n in a circle, start at 1 and cross off every other number until only one number is left.
A version of the children's game "One potato, two potato, ...".
a(n)/A062383(n) = (0, 0.1, 0.01, 0.11, 0.001, ...) enumerates all binary fractions in the unit interval [0, 1). - Fredrik Johansson, Aug 14 2006
Iterating a(n), a(a(n)), ... eventually leads to 2^A000120(n) - 1. - Franklin T. Adams-Watters, Apr 09 2010
By inspection, the solution to the Josephus Problem is a sequence of odd numbers (from 1) starting at each power of 2. This yields a direct closed form expression (see formula below). - Gregory Pat Scandalis, Oct 15 2013
Also zero together with a triangle read by rows in which row n lists the first 2^(n-1) odd numbers (see A005408), n >= 1. Row lengths give A011782. Right border gives A000225. Row sums give A000302, n >= 1. See example. - Omar E. Pol, Oct 16 2013
For n > 0: a(n) = n + 1 - A080079(n). - Reinhard Zumkeller, Apr 14 2014
In binary, a(n) = ROL(n), where ROL = rotate left = remove the leftmost digit and append it to the right. For example, n = 41 = 101001_2 => a(n) = (0)10011_2 = 19. This also explains FTAW's comment above. - M. F. Hasler, Nov 02 2016
In the under-down Australian card deck separation: top card on bottom of a deck of n cards, next card separated on the table, etc., until one card is left. The position a(n), for n >= 1, from top will be the left over card. See, e.g., the Behrends reference, pp. 156-164. For the down-under case see 2*A053645(n), for n >= 3, n not a power of 2. If n >= 2 is a power of 2 the botton card survives. - Wolfdieter Lang, Jul 28 2020

Examples

			From _Omar E. Pol_, Jun 09 2009: (Start)
Written as an irregular triangle the sequence begins:
  0;
  1;
  1,3;
  1,3,5,7;
  1,3,5,7,9,11,13,15;
  1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31;
  1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,
   43,45,47,49,51,53,55,57,59,61,63;
...
(End)
From _Omar E. Pol_, Nov 03 2018: (Start)
An illustration of initial terms, where a(n) is the area (or number of cells) in the n-th region of the structure:
   n   a(n)       Diagram
   0    0     _
   1    1    |_|_ _
   2    1      |_| |
   3    3      |_ _|_ _ _ _
   4    1          |_| | | |
   5    3          |_ _| | |
   6    5          |_ _ _| |
   7    7          |_ _ _ _|
(End)
		

References

  • Erhard Behrends, Der mathematische Zauberstab, Rowolth Taschenbuch Verlag, rororo 62902, 4. Auflage, 2019, pp. 156-164. [English version: The Math Behind the Magic, AMS, 2019.]
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 10.
  • M. S. Petković, "Josephus problem", Famous Puzzles of Great Mathematicians, page 179, Amer. Math. Soc. (AMS), 2009.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Paul Weisenhorn, Josephus und seine Folgen, MNU, 59(2006), pp. 18-19.

Crossrefs

Second column, and main diagonal, of triangle A032434.
Cf. A181281 (with s=5), A054995 (with s=3).
Column k=2 of A360099.

Programs

  • Coq
    Require Import ZArith.
    Fixpoint a (n : positive) : Z :=
    match n with
    | xH => 1
    | xI n' => (2*(a n') + 1)%Z
    | xO n' => (2*(a n') - 1)%Z
    end.
    (* Stefan Haan, Aug 27 2023 *)
  • Haskell
    a006257 n = a006257_list !! n
    a006257_list =
       0 : 1 : (map (+ 1) $ zipWith mod (map (+ 1) $ tail a006257_list) [2..])
    -- Reinhard Zumkeller, Oct 06 2011
    
  • Magma
    [0] cat [2*(n-2^Floor(Log(2,n)))+1: n in [1..100]]; // Vincenzo Librandi, Jan 14 2016
    
  • Maple
    a(0):=0: for n from 1 to 100 do a(n):=(a(n-1)+1) mod n +1: end do:
    seq(a(i),i=0..100); # Paul Weisenhorn, Oct 10 2010; corrected by Robert Israel, Jan 13 2016
    A006257 := proc(n)
        convert(n,base,2) ;
        ListTools[Rotate](%,-1) ;
        add( op(i,%)*2^(i-1),i=1..nops(%)) ;
    end proc: # R. J. Mathar, May 20 2016
    A006257 := n -> 2*n  - Bits:-Iff(n, n):
    seq(A006257(n), n=0..78); # Peter Luschny, Sep 24 2019
  • Mathematica
    Table[ FromDigits[ RotateLeft[ IntegerDigits[n, 2]], 2], {n, 0, 80}] (* Robert G. Wilson v, Sep 21 2003 *)
    Flatten@Table[Range[1, 2^n - 1, 2], {n, 0, 5}] (* Birkas Gyorgy, Feb 07 2011 *)
    m = 5; Range[2^m - 1] + 1 - Flatten@Table[Reverse@Range[2^n], {n, 0, m - 1}] (* Birkas Gyorgy, Feb 07 2011 *)
  • PARI
    a(n)=sum(k=1,n,if(bitxor(n,k)Paul D. Hanna
    
  • PARI
    a(n)=if(n, 2*n-2^logint(2*n,2)+1, 0) \\ Charles R Greathouse IV, Oct 29 2016
    
  • Python
    import math
    def A006257(n):
         return 0 if n==0 else 2*(n-2**int(math.log(n,2)))+1 # Indranil Ghosh, Jan 11 2017
    
  • Python
    def A006257(n): return bool(n&(m:=1<Chai Wah Wu, Jan 22 2023
    (C#)
    static long cs_A006257(this long n) => n == 0 ? 0 : 1 + (1 + (n - 1).cs_A006257()) % n; // Frank Hollstein, Feb 24 2021
    

Formula

To get a(n), write n in binary, rotate left 1 place.
a(n) = 2*A053645(n) + 1 = 2(n-msb(n))+1. - Marc LeBrun, Jul 11 2001. [Here "msb" = "most significant bit", A053644.]
G.f.: 1 + 2/(1-x) * ((3*x-1)/(2-2*x) - Sum_{k>=1} 2^(k-1)*x^2^k). - Ralf Stephan, Apr 18 2003
a(n) = number of positive integers k < n such that n XOR k < n. a(n) = n - A035327(n). - Paul D. Hanna, Jan 21 2006
a(n) = n for n = 2^k - 1. - Zak Seidov, Dec 14 2006
a(n) = n - A035327(n). - K. Spage, Oct 22 2009
a(2^m+k) = 1+2*k; with 0 <= m and 0 <= k < 2^m; n = 2^m+k; m = floor(log_2(n)); k = n-2^m; a(n) = ((a(n-1)+1) mod n) + 1; a(1) = 1. E.g., n=27; m=4; k=11; a(27) = 1 + 2*11 = 23. - Paul Weisenhorn, Oct 10 2010
a(n) = 2*(n - 2^floor(log_2(n))) + 1 (see comment above). - Gregory Pat Scandalis, Oct 15 2013
a(n) = 0 if n = 0 and a(n) = 2*a(floor(n/2)) - (-1)^(n mod 2) if n > 0. - Marek A. Suchenek, Mar 31 2016
G.f. A(x) satisfies: A(x) = 2*A(x^2)*(1 + x) + x/(1 + x). - Ilya Gutkovskiy, Aug 31 2019
For n > 0: a(n) = 2 * A062050(n) - 1. - Frank Hollstein, Oct 25 2021

Extensions

More terms from Robert G. Wilson v, Sep 21 2003

A053645 Distance to largest power of 2 less than or equal to n; write n in binary, change the first digit to zero, and convert back to decimal.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
Offset: 1

Views

Author

Henry Bottomley, Mar 22 2000

Keywords

Comments

Triangle read by rows in which row n lists the first 2^n nonnegative integers (A001477), n >= 0. Right border gives A000225. Row sums give A006516. See example. - Omar E. Pol, Oct 17 2013
Without the initial zero also: zeroless numbers in base 3 (A032924: 1, 2, 11, 12, 21, ...), ternary digits decreased by 1 and read as binary. - M. F. Hasler, Jun 22 2020

Examples

			From _Omar E. Pol_, Oct 17 2013: (Start)
Written as an irregular triangle the sequence begins:
  0;
  0,1;
  0,1,2,3;
  0,1,2,3,4,5,6,7;
  0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15;
  ...
(End)
		

Crossrefs

Programs

  • Haskell
    a053645 1 = 0
    a053645 n = 2 * a053645 n' + b  where (n', b) = divMod n 2
    -- Reinhard Zumkeller, Aug 28 2014
    a053645_list = concatMap (0 `enumFromTo`) a000225_list
    -- Reinhard Zumkeller, Feb 04 2013, Mar 23 2012
    
  • Magma
    [n - 2^Ilog2(n): n in [1..70]]; // Vincenzo Librandi, Jul 18 2019
    
  • Maple
    seq(n - 2^ilog2(n), n=1..1000); # Robert Israel, Dec 23 2015
  • Mathematica
    Table[n - 2^Floor[Log2[n]], {n, 100}] (* IWABUCHI Yu(u)ki, May 25 2017 *)
    Table[FromDigits[Rest[IntegerDigits[n, 2]], 2], {n, 100}] (* IWABUCHI Yu(u)ki, May 25 2017 *)
  • PARI
    a(n)=n-2^(#binary(n)-1) \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    def a(n): return n - 2**(n.bit_length()-1)
    print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Jul 03 2021
    
  • Python
    def A053645(n): return n&(1<Chai Wah Wu, Jan 22 2023

Formula

a(n) = n - 2^A000523(n).
G.f.: 1/(1-x) * ((2x-1)/(1-x) + Sum_{k>=1} 2^(k-1)*x^2^k). - Ralf Stephan, Apr 18 2003
a(n) = (A006257(n)-1)/2. - N. J. A. Sloane, May 16 2003
a(1) = 0, a(2n) = 2a(n), a(2n+1) = 2a(n) + 1. - N. J. A. Sloane, Sep 13 2003
a(n) = A062050(n) - 1. - N. J. A. Sloane, Jun 12 2004
a(A004760(n+1)) = n. - Reinhard Zumkeller, May 20 2009
a(n) = f(n-1,1) with f(n,m) = if n < m then n else f(n-m,2*m). - Reinhard Zumkeller, May 20 2009
Conjecture: a(n) = (1 - A036987(n-1))*(1 + a(n-1)) for n > 1 with a(1) = 0. - Mikhail Kurkov, Jul 16 2019

A065120 Highest power of 2 dividing A057335(n).

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Alford Arnold, Nov 12 2001

Keywords

Comments

a(n) appears on row 1 of the array illustrated in A066099.
Except for initial zero, ordinal transform of A062050. After initial zero, n-th chunk consists of n, one n-1, two (n-2)'s, ..., 2^(k-1) (n-k)'s, ..., 2^(n-1) 1's. - Franklin T. Adams-Watters, Sep 11 2006
Zero together with a triangle read by rows in which row j lists the first 2^(j-1) terms of A001511 in nonincreasing order, j >= 1, see example. Also row j lists the first parts, in nonincreasing order, of the compositions of j. - Omar E. Pol, Sep 11 2013
The n-th row represents the frequency distribution of 1, 2, 3, ..., 2^(n-1) in the first 2^n - 1 terms of A003602. - Gary W. Adamson, Jun 10 2021

Examples

			A057335(7)= 30 and 30 = 2*3*5 so a(7) = 1; A057335(9)= 24 and 24 = 8*3 so a(9) = 3
From _Omar E. Pol_, Aug 30 2013: (Start)
Written as an irregular triangle with row lengths A011782:
  0;
  1;
  2,1;
  3,2,1,1;
  4,3,2,2,1,1,1,1;
  5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1;
  6,5,4,4,3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
  ...
Column 1 is A001477. Row sums give A000225. Row lengths is A011782.
(End)
		

Crossrefs

Programs

  • Mathematica
    nmax = 105;
    A062050 = Flatten[Table[Range[2^n], {n, 0, Log[2, nmax] // Ceiling}]];
    Module[{b}, b[_] = 0;
    a[n_] := If[n == 0, 0, With[{t = A062050[[n]]}, b[t] = b[t] + 1]]];
    a /@ Range[0, nmax] (* Jean-François Alcover, Jan 12 2022 *)
  • PARI
    lista(nn) = {my(v = vector(nn)); v[1] = 1; for (i=2, nn, v[i] = mg(i-1)*v[(i+1)\2];); for (i=1, nn, print1(valuation(v[i], 2), ", "););} \\ Michel Marcus, Feb 09 2014
    
  • PARI
    my(L(n)=if(n,logint(n,2),-1)); a(n) = my(p=L(n)); p - L(n-1<Kevin Ryde, Aug 06 2021

Formula

From Daniel Starodubtsev, Aug 05 2021: (Start)
a(n) = A001511(A059894(n) - 2^A000523(n) + 1) for n > 0 with a(0) = 0.
a(2n+1) = a(n), a(2n) = a(n) + A036987(n-1) for n > 1 with a(0) = 0, a(1) = 1. (End)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003

A004754 Numbers n whose binary expansion starts 10.

Original entry on oeis.org

2, 4, 5, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 128, 129, 130, 131
Offset: 1

Views

Author

Keywords

Comments

A000120(a(n)) = A000120(n); A023416(a(n-1)) = A008687(n) for n > 1. - Reinhard Zumkeller, Dec 04 2015

Examples

			10 in binary is 1010, so 10 is in sequence.
		

Crossrefs

Cf. A123001 (binary version), A004755 (11), A004756 (100), A004757 (101), A004758 (110), A004759 (111).
Apart from initial terms, same as A004761.

Programs

  • Haskell
    import Data.List (transpose)
    a004754 n = a004754_list !! (n-1)
    a004754_list = 2 : concat (transpose [zs, map (+ 1) zs])
                       where zs = map (* 2) a004754_list
    -- Reinhard Zumkeller, Dec 04 2015
    
  • Mathematica
    w = {1, 0}; Select[Range[2, 131], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* Michael De Vlieger, Aug 08 2016 *)
  • PARI
    a(n)=n+2^floor(log(n)/log(2))
    
  • PARI
    is(n)=n>1 && !binary(n)[2] \\ Charles R Greathouse IV, Sep 23 2012
    
  • Python
    def A004754(n): return n+(1<Chai Wah Wu, Jul 13 2022

Formula

a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + [n==0].
a(n) = n + 2^floor(log_2(n)) = n + A053644(n).
a(2^m+k) = 2^(m+1) + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016

Extensions

Edited by Ralf Stephan, Oct 12 2003

A004755 Binary expansion starts 11.

Original entry on oeis.org

3, 6, 7, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
Offset: 1

Views

Author

Keywords

Comments

a(n) is the smallest value > a(n-1) (or > 1 for n=1) for which A001511(a(n)) = A001511(n). - Franklin T. Adams-Watters, Oct 23 2006

Examples

			12 in binary is 1100, so 12 is in the sequence.
		

Crossrefs

Equals union of A079946 and A080565.
Cf. A004754 (10), A004756 (100), A004757 (101), A004758 (110), A004759 (111).

Programs

  • Haskell
    import Data.List (transpose)
    a004755 n = a004755_list !! (n-1)
    a004755_list = 3 : concat (transpose [zs, map (+ 1) zs])
                       where zs = map (* 2) a004755_list
    -- Reinhard Zumkeller, Dec 04 2015
    
  • Maple
    a:= proc(n) n+2*2^floor(log(n)/log(2)) end: seq(a(n),n=1..60); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    Flatten[Table[FromDigits[#,2]&/@(Join[{1,1},#]&/@Tuples[{0,1},n]),{n,0,5}]] (* Harvey P. Dale, Feb 05 2015 *)
  • PARI
    a(n)=n+2*2^floor(log(n)/log(2))
    
  • PARI
    is(n)=n>2 && binary(n)[2] \\ Charles R Greathouse IV, Sep 23 2012
    
  • Python
    f = open('b004755.txt', 'w')
    lo = 3
    hi = 4
    i = 1
    while i<16384:
        for x in range(lo,hi):
            f.write(str(i)+" "+str(x)+"\n")
            i += 1
        lo <<= 1
        hi <<= 1
    # Kenny Lau, Jul 05 2016
    
  • Python
    def A004755(n): return n+(1<Chai Wah Wu, Jul 13 2022

Formula

a(2n) = 2*a(n), a(2n+1) = 2*a(n) + 1 + 2*[n==0].
a(n) = n + 2 * 2^floor(log_2(n)) = A004754(n) + A053644(n).
a(n) = 2n + A080079(n). - Benoit Cloitre, Feb 22 2003
G.f.: (1/(1+x)) * (1 + Sum_{k>=0, t=x^2^k} 2^k*(2t+t^2)/(1+t)).
a(n) = n + 2^(floor(log_2(n)) + 1) = n + A062383(n). - Franklin T. Adams-Watters, Oct 23 2006
a(2^m+k) = 2^(m+1) + 2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016

Extensions

Edited by Ralf Stephan, Oct 12 2003

A253317 Indices in A261283 where records occur.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 10, 11, 128, 129, 130, 131, 136, 137, 138, 139, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906, 32907, 2147483648, 2147483649, 2147483650, 2147483651, 2147483656, 2147483657
Offset: 1

Views

Author

Philippe Beaudoin, Dec 30 2014

Keywords

Comments

From Gus Wiseman, Dec 29 2023: (Start)
These are numbers whose binary indices are all powers of 2, where a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, the terms together with their binary expansions and binary indices begin:
0: 0 ~ {}
1: 1 ~ {1}
2: 10 ~ {2}
3: 11 ~ {1,2}
8: 1000 ~ {4}
9: 1001 ~ {1,4}
10: 1010 ~ {2,4}
11: 1011 ~ {1,2,4}
128: 10000000 ~ {8}
129: 10000001 ~ {1,8}
130: 10000010 ~ {2,8}
131: 10000011 ~ {1,2,8}
136: 10001000 ~ {4,8}
137: 10001001 ~ {1,4,8}
138: 10001010 ~ {2,4,8}
139: 10001011 ~ {1,2,4,8}
For powers of 3 we have A368531.
(End)

Crossrefs

Cf. A053644 (most significant bit).
A048793 lists binary indices, length A000120, sum A029931.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Maple
    a := proc(n) local k, A:
    A := [seq(0,i=1..n)]: A[1]:=0:
    for k from 1 to n-1 do
       A[k+1] := A[k-2^ilog2(k)+1]+2^(2^ilog2(k)-1): od:
    return A[n]: end proc: # Lorenzo Sauras Altuzarra, Dec 18 2019
    # second Maple program:
    a:= n-> (l-> add(l[i+1]*2^(2^i-1), i=0..nops(l)-1))(Bits[Split](n-1)):
    seq(a(n), n=1..38);  # Alois P. Heinz, Dec 13 2023
  • Mathematica
    Nest[Append[#1, #1[[-#2]] + 2^(#2 - 1)] & @@ {#, 2^(IntegerLength[Length[#], 2] - 1)} &, {0, 1}, 36] (* Michael De Vlieger, May 08 2020 *)
  • PARI
    a(n)={if(n<=1, 0, my(t=1<Andrew Howroyd, Dec 20 2019

Formula

a(1) = 0 and a(n) = a(n-A053644(n-1)) + 2^(A053644(n-1)-1). - Lorenzo Sauras Altuzarra, Dec 18 2019
a(n) = A358126(n-1) / 2. - Tilman Piesk, Dec 18 2022
a(2^n+1) = 2^(2^n-1) = A058891(n+1). - Gus Wiseman, Dec 29 2023
a(2^n) = A072639(n). - Gus Wiseman, Dec 29 2023
G.f.: 1/(1-x) * Sum_{k>=0} (2^(-1+2^k))*x^2^k/(1+x^2^k). - John Tyler Rascoe, May 22 2024

Extensions

Corrected reference in name from A253315 to A261283. - Tilman Piesk, Dec 18 2022

A004757 Binary expansion starts 101.

Original entry on oeis.org

5, 10, 11, 20, 21, 22, 23, 40, 41, 42, 43, 44, 45, 46, 47, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185
Offset: 1

Views

Author

Keywords

Examples

			22 in binary is 10110, so 22 is in sequence.
		

Crossrefs

Cf. A004754 (10), A004755 (11), A004756 (100), A004758 (110), A004759 (111).

Programs

  • Haskell
    import Data.List (transpose)
    a004757 n = a004757_list !! (n-1)
    a004757_list = 5 : concat (transpose [zs, map (+ 1) zs])
                       where zs = map (* 2) a004757_list
    -- Reinhard Zumkeller, Dec 04 2015
    
  • Mathematica
    Table[n + 4*2^Floor@ Log2@ n, {n, 57}] (* or *)
    w = {1, 0, 1}; Select[Range[5, 185], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* Michael De Vlieger, Aug 10 2016 *)
    Select[Range[5,200],Take[IntegerDigits[#,2],3]=={1,0,1}&] (* Harvey P. Dale, Aug 26 2016 *)
  • PARI
    a(n)=n+4*2^floor(log(n)/log(2))
    
  • Python
    def A004757(n): return n+(2<Chai Wah Wu, Jul 13 2022

Formula

a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 4*[n==0].
a(n) = n + 4 * 2^floor(log_2(n)) = A004756(n) + A053644(n).
a(2^m+k) = 5*2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016

Extensions

Edited by Ralf Stephan, Oct 12 2003

A004758 Binary expansion starts 110.

Original entry on oeis.org

6, 12, 13, 24, 25, 26, 27, 48, 49, 50, 51, 52, 53, 54, 55, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213
Offset: 1

Views

Author

Keywords

Examples

			26 in binary is 11010, so 26 is in sequence.
		

Crossrefs

Cf. A004754 (10), A004755 (11), A004756 (100), A004757 (101), A004759 (111).

Programs

  • Haskell
    import Data.List (transpose)
    a004758 n = a004758_list !! (n-1)
    a004758_list = 6 : concat (transpose [zs, map (+ 1) zs])
                       where zs = map (* 2) a004758_list
    -- Reinhard Zumkeller, Dec 03 2015
    
  • Mathematica
    w = {1, 1, 0}; Select[Range[5, 213], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* or *)
    Table[n + 5*2^Floor@ Log2@ n, {n, 53}] (* Michael De Vlieger, Aug 10 2016 *)
  • PARI
    a(n)=n+5*2^floor(log(n)/log(2))
    
  • Python
    def A004758(n): return n+(5<Chai Wah Wu, Jul 13 2022

Formula

a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 5*[n==0].
a(n) = n + 5 * 2^floor(log_2(n)) = A004757(n) + A053644(n).
a(2^m+k) = 6*2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016

Extensions

Edited by Ralf Stephan, Oct 12 2003

A004756 Binary expansion starts 100.

Original entry on oeis.org

4, 8, 9, 16, 17, 18, 19, 32, 33, 34, 35, 36, 37, 38, 39, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153
Offset: 1

Views

Author

Keywords

Examples

			18 in binary is 10010, so 18 is in sequence.
		

Crossrefs

Cf. A004754 (10), A004755 (11), A004757 (101), A004758 (110), A004759 (111).

Programs

  • Haskell
    import Data.List (transpose)
    a004756 n = a004756_list !! (n-1)
    a004756_list = 4 : concat (transpose [zs, map (+ 1) zs])
                       where zs = map (* 2) a004756_list
    -- Reinhard Zumkeller, Dec 04 2015
    
  • Mathematica
    Select[Range[4, 153], Take[IntegerDigits[#, 2], 3] == {1, 0, 0} &] (* Michael De Vlieger, Aug 07 2016 *)
  • PARI
    a(n)=n+3*2^floor(log(n)/log(2))
    
  • Python
    def A004756(n): return n+(3<Chai Wah Wu, Jul 13 2022

Formula

a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 3*[n==0].
a(n) = n + 3 * 2^floor(log_2(n)) = A004755(n) + A053644(n).
a(2^m+k) = 2^(m+2) + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 07 2016

Extensions

Edited by Ralf Stephan, Oct 12 2003
Showing 1-10 of 19 results. Next