A217757
Product_{i=0..n} (i! + 1).
Original entry on oeis.org
2, 4, 12, 84, 2100, 254100, 183206100, 923541950100, 37238134969982100, 13513011656042074430100, 49036030210457135734021310100, 1957361459740805606124917565020990100, 937579272951542930363610919638075856505150100
Offset: 0
-
function factorial(n) {
var i,c=1;
for (i=2;i<=n;i++) c*=i;
return c;
}
a=2;
for (j=1;j<10;j++) {
a*=(factorial(j)+1);
document.write(a+", ");
}
-
a:= proc(n) a(n):= `if`(n=0, 2, a(n-1)*(n!+1)) end:
seq(a(n), n=0..14); # Alois P. Heinz, May 20 2013
-
Table[Product[i!+1,{i,0,n}],{n,0,12}] (* Geoffrey Critzer, May 04 2013 *)
Rest[FoldList[Times,1,Range[0,15]!+1]] (* Harvey P. Dale, May 28 2013 *)
A260613
Triangle read by rows: T(n, k) = coefficient of x^(n-k) in Product_{m=1..n} (x+prime(m)); 0 <= k <= n, n >= 0.
Original entry on oeis.org
1, 1, 2, 1, 5, 6, 1, 10, 31, 30, 1, 17, 101, 247, 210, 1, 28, 288, 1358, 2927, 2310, 1, 41, 652, 5102, 20581, 40361, 30030, 1, 58, 1349, 16186, 107315, 390238, 716167, 510510, 1, 77, 2451, 41817, 414849, 2429223, 8130689, 14117683, 9699690
Offset: 0
The triangle starts:
Row 0: 1;
Row 1: 1, 2; Coefficients of x + 2.
Row 2: 1, 5, 6; Coefficients of (x+2)(x+3) = x^2 + 5x + 6.
Row 3: 1, 10, 31, 30; Coeff's of (x+2)(x+3)(x+5) = x^3 + 10x^2 + 31x + 30.
Row 5: 1, 17, 101, 247, 210;
Row 6: 1, 28, 288, 1358, 2927, 2310;
...
-
T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n))(mul(x+ithprime(i), i=1..n)):
seq(T(n), n=0..10); # Alois P. Heinz, Aug 18 2019
-
row[n_] := CoefficientList[Product[x + Prime[m], {m, 1, n}] + O[x]^(n+1), x] // Reverse;
row /@ Range[0, 8] // Flatten (* Jean-François Alcover, Sep 16 2019 *)
-
tabl(nn) = {for (n=0, nn, polp = prod(k=1, n, x+prime(k)); forstep (k= n, 0, -1, print1(polcoeff(polp, k), ", ");); print(););} \\ Michel Marcus, Aug 10 2015
A072986
Least k such that Product_{i=1..k} (prime(i) + 1) >= n*Product_{i=1..k} prime(i).
Original entry on oeis.org
1, 2, 6, 11, 24, 52, 113, 248, 553, 1245, 2828, 6481, 14963, 34770, 81253, 190836, 450202, 1066269, 2534269, 6042375, 14447465, 34632759, 83212840, 200360193, 483361096, 1168159015, 2827750519
Offset: 1
-
a = b = k = 1; Do[ While[a = a*Prime[k]; b = b*(Prime[k] + 1); b < n*a, k++ ]; Print[k]; k++, {n, 1, 16}]
-
a(n)=if(n<0,0,s=1; while(prod(i=1,s, prime(i)+1)
A078558
GCD of sigma(p#) and phi(p#) where p# = A002110(n) is the product of the first n primes.
Original entry on oeis.org
1, 2, 8, 48, 96, 1152, 9216, 1658880, 3317760, 92897280, 2786918400, 100329062400, 802632499200, 370816214630400, 741632429260800, 2966529717043200, 29665297170432000, 355983566045184000
Offset: 1
m=2,3,30,210 primorials are balanced numbers so these GCD() equals phi(): a(n)=1,2,8,48 (see A005867).
-
GCD[DivisorSigma[1,#],EulerPhi[#]]&/@FoldList[Times,Prime[Range[20]]] (* Harvey P. Dale, Feb 28 2016 *)
-
a(n)=gcd(prod(i=1,n,prime(i)-1),prod(i=1,n,prime(i)+1)) \\ Charles R Greathouse IV, Dec 09 2013
A074107
a(n) = Product of (prime + 1) for first n primes - primorial (n); Sum of proper divisors of the n-th primorial.
Original entry on oeis.org
0, 1, 6, 42, 366, 4602, 66738, 1231314, 25136790, 612982650, 18612572370, 602072009070, 23079296834790, 976751205195990, 43281303292150770, 2090585319354906990, 113506497027753468870, 6842978980142398176930, 426187457118982899608730, 29098035465450244144376910, 2102916875063497845451016610, 156173789584825539524342644530
Offset: 0
a(3) = (2+1)*(3+1)*(5+1) - 2*3*5 = 72 - 30 = 42.
-
for n from 1 to 25 do a[n] := product(ithprime(i)+1,i=1..n)-product(ithprime(i),i=1..n): od:seq(a[j],j=1..25);
-
Module[{nn=20,p,pr,pr1},p=Prime[Range[nn]];pr=FoldList[Times,1,p];pr1= FoldList[Times,1,p+1];#[[2]]-#[[1]]&/@Rest[Thread[{pr,pr1}]]](* Harvey P. Dale, Feb 07 2015 *)
-
A074107(n) = (prod(i=1,n,1+prime(i))-prod(i=1,n,prime(i))); \\ Antti Karttunen, Nov 19 2024
Term a(0)=0 prepended, data section further extended, and secondary definition added by
Antti Karttunen, Nov 19 2024
A180617
Sum of divisors of the product of two consecutive primes.
Original entry on oeis.org
12, 24, 48, 96, 168, 252, 360, 480, 720, 960, 1216, 1596, 1848, 2112, 2592, 3240, 3720, 4216, 4896, 5328, 5920, 6720, 7560, 8820, 9996, 10608, 11232, 11880, 12540, 14592, 16896, 18216, 19320, 21000, 22800, 24016, 25912, 27552, 29232, 31320, 32760, 34944, 37248, 38412
Offset: 1
a(1) = sigma(2*3) = 12, a(2) = sigma(3*5) = 24.
-
[(1+NthPrime(n))*(1+NthPrime(n+1)): n in [1..50]]; // Vincenzo Librandi, Feb 16 2015
-
DivisorSigma[1,#]&/@(Times@@@Partition[Prime[Range[50]],2,1]) (* Harvey P. Dale, Apr 04 2015 *)
Table[Prime[n]*Prime[n+1]+Prime[n]+Prime[n+1]+1,{n,1,30}] (* Metin Sariyar, Dec 08 2019 *)
-
for (n=1,10, i=prod(x=n,n+1,prime(x)); p=sigma(i); print1(p, ", "); )
-
a(n)=my(p=prime(n)); (p+1)*(nextprime(p+1)+1) \\ Charles R Greathouse IV, Feb 16 2015
A309802
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+2} (prime(i)*x-1).
Original entry on oeis.org
1, 10, 101, 1358, 20581, 390238, 8130689, 201123530, 6166988769, 201097530280, 7754625545261, 329758834067168, 14671637258193181, 711027519310719868, 38706187989054920001, 2338431642812927422310, 145908145906128304198449, 9976861293427674211625032
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309803,
A309804,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+2), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 18 2019
A309803
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+3} (prime(i)*x-1).
Original entry on oeis.org
-1, -17, -288, -5102, -107315, -2429223, -64002818, -2057205252, -69940351581, -2788890538777, -122099137635118, -5580021752377242, -276932659619923555, -15388458479166668283, -946625238259888348698, -60082571176666116692888, -4171440414742758122621945
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309802,
A309804,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+3), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 19 2019
A342996
The number of partitions of the n-th primorial.
Original entry on oeis.org
1, 2, 11, 5604, 9275102575355, 21565010821742923705373368869534441911701199887419
Offset: 0
-
b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*ithprime(n)) end:
a:= n-> combinat[numbpart](b(n)):
seq(a(n), n=0..5);
-
b[n_] := b[n] = If[n == 0, 1, b[n - 1]*Prime[n]];
a[n_] := PartitionsP[b[n]];
Table[a[n], {n, 0, 5}] (* Jean-François Alcover, Jul 07 2021, from Maple *)
-
a(n) = numbpart(prod(k=1, n, prime(k))); \\ Michel Marcus, Jul 07 2021
-
from sympy import primorial
from sympy.functions import partition
def A342996(n): return partition(primorial(n)) if n > 0 else 1 # Chai Wah Wu, Apr 03 2021
A343147
The number of partitions of the n-th primorial into distinct parts.
Original entry on oeis.org
1, 1, 4, 296, 884987529, 41144767887910339859917073881177514
Offset: 0
-
b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*ithprime(n)) end:
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> g(b(n)):
seq(a(n), n=0..5);
-
$RecursionLimit = 2^13;
b[n_] := b[n] = If[n == 0, 1, b[n - 1]*Prime[n]];
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[
If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
a[n_] := g[b[n]];
Table[a[n], {n, 0, 5}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)
Comments