cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A217757 Product_{i=0..n} (i! + 1).

Original entry on oeis.org

2, 4, 12, 84, 2100, 254100, 183206100, 923541950100, 37238134969982100, 13513011656042074430100, 49036030210457135734021310100, 1957361459740805606124917565020990100, 937579272951542930363610919638075856505150100
Offset: 0

Views

Author

Jon Perry, Mar 23 2013

Keywords

Crossrefs

Programs

  • JavaScript
    function factorial(n) {
    var i,c=1;
    for (i=2;i<=n;i++) c*=i;
    return c;
    }
    a=2;
    for (j=1;j<10;j++) {
    a*=(factorial(j)+1);
    document.write(a+", ");
    }
  • Maple
    a:= proc(n) a(n):= `if`(n=0, 2, a(n-1)*(n!+1)) end:
    seq(a(n), n=0..14);  # Alois P. Heinz, May 20 2013
  • Mathematica
    Table[Product[i!+1,{i,0,n}],{n,0,12}]  (* Geoffrey Critzer, May 04 2013 *)
    Rest[FoldList[Times,1,Range[0,15]!+1]] (* Harvey P. Dale, May 28 2013 *)

Formula

a(n) ~ c * A000178(n), where c = A238695 = Product_{k>=0} (1 + 1/k!) = 7.364308272367257256372772509631... . - Vaclav Kotesovec, Jul 20 2015

A260613 Triangle read by rows: T(n, k) = coefficient of x^(n-k) in Product_{m=1..n} (x+prime(m)); 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 10, 31, 30, 1, 17, 101, 247, 210, 1, 28, 288, 1358, 2927, 2310, 1, 41, 652, 5102, 20581, 40361, 30030, 1, 58, 1349, 16186, 107315, 390238, 716167, 510510, 1, 77, 2451, 41817, 414849, 2429223, 8130689, 14117683, 9699690
Offset: 0

Views

Author

Matthew Campbell, Aug 10 2015

Keywords

Comments

Up to signs and order of coefficients the same as A070918. Except for signs and the first column the same as A238146. - M. F. Hasler, Aug 13 2015

Examples

			The triangle starts:
Row 0: 1;
Row 1: 1, 2;  Coefficients of x + 2.
Row 2: 1, 5, 6;  Coefficients of (x+2)(x+3) = x^2 + 5x + 6.
Row 3: 1, 10, 31, 30; Coeff's of (x+2)(x+3)(x+5) = x^3 + 10x^2 + 31x + 30.
Row 5: 1, 17, 101, 247, 210;
Row 6: 1, 28, 288, 1358, 2927, 2310;
...
		

Crossrefs

Main diagonal gives A002110.
Row sums give A054640.
Cf. A000040.

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n))(mul(x+ithprime(i), i=1..n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Aug 18 2019
  • Mathematica
    row[n_] := CoefficientList[Product[x + Prime[m], {m, 1, n}] + O[x]^(n+1), x] // Reverse;
    row /@ Range[0, 8] // Flatten (* Jean-François Alcover, Sep 16 2019 *)
  • PARI
    tabl(nn) = {for (n=0, nn, polp = prod(k=1, n, x+prime(k)); forstep (k= n, 0, -1, print1(polcoeff(polp, k), ", ");); print(););} \\ Michel Marcus, Aug 10 2015

Formula

T(n, 1) = A007504(n) for n >= 1.
T(n, 2) = A024447(n) for n >= 2.

Extensions

Corrected and edited by M. F. Hasler, Aug 13 2015
a(20) in b-file corrected by Andrew Howroyd, Dec 31 2017

A072986 Least k such that Product_{i=1..k} (prime(i) + 1) >= n*Product_{i=1..k} prime(i).

Original entry on oeis.org

1, 2, 6, 11, 24, 52, 113, 248, 553, 1245, 2828, 6481, 14963, 34770, 81253, 190836, 450202, 1066269, 2534269, 6042375, 14447465, 34632759, 83212840, 200360193, 483361096, 1168159015, 2827750519
Offset: 1

Views

Author

Benoit Cloitre, Aug 14 2002

Keywords

Comments

Least k such that A054640(k) >= n*A002110(k). - Michel Marcus, Jan 09 2021

Crossrefs

Programs

  • Mathematica
    a = b = k = 1; Do[ While[a = a*Prime[k]; b = b*(Prime[k] + 1); b < n*a, k++ ]; Print[k]; k++, {n, 1, 16}]
  • PARI
    a(n)=if(n<0,0,s=1; while(prod(i=1,s, prime(i)+1)
    				

Formula

Limit_{n->oo} a(n+1)/a(n) = e. - Robert Gerbicz, May 09 2008
a(n) = PrimePi(A072997(n)) = A000720(A072997(n)). - Amiram Eldar, Apr 18 2025

Extensions

Edited and extended by Robert G. Wilson v, Aug 20 2002
a(17)-a(22) from Robert Gerbicz, May 09 2008
a(23)-a(27) from Amiram Eldar, Apr 18 2025

A078558 GCD of sigma(p#) and phi(p#) where p# = A002110(n) is the product of the first n primes.

Original entry on oeis.org

1, 2, 8, 48, 96, 1152, 9216, 1658880, 3317760, 92897280, 2786918400, 100329062400, 802632499200, 370816214630400, 741632429260800, 2966529717043200, 29665297170432000, 355983566045184000
Offset: 1

Views

Author

Labos Elemer, Dec 06 2002

Keywords

Examples

			m=2,3,30,210 primorials are balanced numbers so these GCD() equals phi(): a(n)=1,2,8,48 (see A005867).
		

Crossrefs

Programs

  • Mathematica
    GCD[DivisorSigma[1,#],EulerPhi[#]]&/@FoldList[Times,Prime[Range[20]]] (* Harvey P. Dale, Feb 28 2016 *)
  • PARI
    a(n)=gcd(prod(i=1,n,prime(i)-1),prod(i=1,n,prime(i)+1)) \\ Charles R Greathouse IV, Dec 09 2013

Formula

a(n) = gcd(A000203(A002110(n)), A000005(A002110(n))) = gcd(A005867(n), A054640(n)).

A074107 a(n) = Product of (prime + 1) for first n primes - primorial (n); Sum of proper divisors of the n-th primorial.

Original entry on oeis.org

0, 1, 6, 42, 366, 4602, 66738, 1231314, 25136790, 612982650, 18612572370, 602072009070, 23079296834790, 976751205195990, 43281303292150770, 2090585319354906990, 113506497027753468870, 6842978980142398176930, 426187457118982899608730, 29098035465450244144376910, 2102916875063497845451016610, 156173789584825539524342644530
Offset: 0

Views

Author

Amarnath Murthy, Aug 22 2002

Keywords

Examples

			a(3) = (2+1)*(3+1)*(5+1) - 2*3*5 = 72 - 30 = 42.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 25 do a[n] := product(ithprime(i)+1,i=1..n)-product(ithprime(i),i=1..n): od:seq(a[j],j=1..25);
  • Mathematica
    Module[{nn=20,p,pr,pr1},p=Prime[Range[nn]];pr=FoldList[Times,1,p];pr1= FoldList[Times,1,p+1];#[[2]]-#[[1]]&/@Rest[Thread[{pr,pr1}]]](* Harvey P. Dale, Feb 07 2015 *)
  • PARI
    A074107(n) = (prod(i=1,n,1+prime(i))-prod(i=1,n,prime(i))); \\ Antti Karttunen, Nov 19 2024

Formula

From Antti Karttunen, Nov 19 2024: (Start)
a(n) = A348507(A002110(n)) = A054640(n) - A002110(n) = A001065(A002110(n)).
a(n) >= A024451(n), because A348507(n) >= A003415(n).
For n >= 1, a(n) <= A070826(1+n) [= A002110(1+n)/2] < A051674(n).
(End)

Extensions

More terms from Sascha Kurz, Feb 01 2003
Term a(0)=0 prepended, data section further extended, and secondary definition added by Antti Karttunen, Nov 19 2024

A180617 Sum of divisors of the product of two consecutive primes.

Original entry on oeis.org

12, 24, 48, 96, 168, 252, 360, 480, 720, 960, 1216, 1596, 1848, 2112, 2592, 3240, 3720, 4216, 4896, 5328, 5920, 6720, 7560, 8820, 9996, 10608, 11232, 11880, 12540, 14592, 16896, 18216, 19320, 21000, 22800, 24016, 25912, 27552, 29232, 31320, 32760, 34944, 37248, 38412
Offset: 1

Views

Author

Thomas Kellar, Sep 12 2010

Keywords

Examples

			a(1) = sigma(2*3) = 12, a(2) = sigma(3*5) = 24.
		

Crossrefs

A distant relative of A054640.

Programs

  • Magma
    [(1+NthPrime(n))*(1+NthPrime(n+1)): n in [1..50]]; // Vincenzo Librandi, Feb 16 2015
  • Mathematica
    DivisorSigma[1,#]&/@(Times@@@Partition[Prime[Range[50]],2,1]) (* Harvey P. Dale, Apr 04 2015 *)
    Table[Prime[n]*Prime[n+1]+Prime[n]+Prime[n+1]+1,{n,1,30}] (* Metin Sariyar, Dec 08 2019 *)
  • PARI
    for (n=1,10, i=prod(x=n,n+1,prime(x)); p=sigma(i); print1(p, ", "); )
    
  • PARI
    a(n)=my(p=prime(n)); (p+1)*(nextprime(p+1)+1) \\ Charles R Greathouse IV, Feb 16 2015
    

Formula

a(n) = A000203(A006094(n)). - Omar E. Pol, Dec 08 2019
a(n) = A006094(n) + A001043(n) + 1. - Metin Sariyar, Dec 08 2019
a(n) = A126199(n) + 1 (after above formula). - Omar E. Pol, Dec 08 2019

Extensions

More terms from Vincenzo Librandi, Feb 16 2015
Name simplified by Omar E. Pol, Dec 08 2019

A309802 a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+2} (prime(i)*x-1).

Original entry on oeis.org

1, 10, 101, 1358, 20581, 390238, 8130689, 201123530, 6166988769, 201097530280, 7754625545261, 329758834067168, 14671637258193181, 711027519310719868, 38706187989054920001, 2338431642812927422310, 145908145906128304198449, 9976861293427674211625032
Offset: 0

Views

Author

Alexey V. Bazhin, Aug 17 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+2), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 18 2019

Formula

a(n) = [x^n] Product_{i=1..n+2} (prime(i)*x-1).
a(n) = abs(A070918(n+2,2)).
a(n) = abs(A238146(n+2,n)) for n>0.
a(n) = A260613(n+2,n).

A309803 a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+3} (prime(i)*x-1).

Original entry on oeis.org

-1, -17, -288, -5102, -107315, -2429223, -64002818, -2057205252, -69940351581, -2788890538777, -122099137635118, -5580021752377242, -276932659619923555, -15388458479166668283, -946625238259888348698, -60082571176666116692888, -4171440414742758122621945
Offset: 0

Views

Author

Alexey V. Bazhin, Aug 17 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+3), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 19 2019

Formula

a(n) = [x^n] Product_{i=1..n+3} (prime(i)*x-1).
a(n) = -abs(A070918(n+3,3)).
a(n) = -abs(A238146(n+3,n)) for n>0.
a(n) = -A260613(n+3,n).

A342996 The number of partitions of the n-th primorial.

Original entry on oeis.org

1, 2, 11, 5604, 9275102575355, 21565010821742923705373368869534441911701199887419
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*ithprime(n)) end:
    a:= n-> combinat[numbpart](b(n)):
    seq(a(n), n=0..5);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, b[n - 1]*Prime[n]];
    a[n_] := PartitionsP[b[n]];
    Table[a[n], {n, 0, 5}] (* Jean-François Alcover, Jul 07 2021, from Maple *)
  • PARI
    a(n) = numbpart(prod(k=1, n, prime(k))); \\ Michel Marcus, Jul 07 2021
  • Python
    from sympy import primorial
    from sympy.functions import partition
    def A342996(n): return partition(primorial(n)) if n > 0 else 1 # Chai Wah Wu, Apr 03 2021
    

Formula

a(n) = A000041(A002110(n)).

A343147 The number of partitions of the n-th primorial into distinct parts.

Original entry on oeis.org

1, 1, 4, 296, 884987529, 41144767887910339859917073881177514
Offset: 0

Views

Author

Alois P. Heinz, Apr 06 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*ithprime(n)) end:
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> g(b(n)):
    seq(a(n), n=0..5);
  • Mathematica
    $RecursionLimit = 2^13;
    b[n_] := b[n] = If[n == 0, 1, b[n - 1]*Prime[n]];
    g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[
         If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
    a[n_] := g[b[n]];
    Table[a[n], {n, 0, 5}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)

Formula

a(n) = A000009(A002110(n)).
Previous Showing 11-20 of 29 results. Next