cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A054890 Layer counting sequence for hyperbolic tessellation by regular heptagons of angle Pi/3.

Original entry on oeis.org

1, 7, 42, 245, 1428, 8323, 48510, 282737, 1647912, 9604735, 55980498, 326278253, 1901689020, 11083855867, 64601446182, 376524821225, 2194547481168, 12790760065783, 74550012913530, 434509317415397
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

The layer sequence is the sequence of the cardinalities of the layers accumulating around a (finite-sided) polygon of the tessellation under successive side-reflections; see the illustration accompanying A054888.

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else 7*Evaluate(ChebyshevSecond(n-1), 3): n in [1..40]]; // G. C. Greubel, Feb 08 2023
    
  • Mathematica
    Rest@CoefficientList[Series[x*(1+x+x^2)/(1-6*x+x^2), {x,0,30}], x] (* Michael De Vlieger, Dec 29 2020 *)
    LinearRecurrence[{6,-1},{1,7,42},20] (* Harvey P. Dale, Jun 06 2021 *)
  • SageMath
    [7*chebyshev_U(n-2, 3) + int(n==1) for n in range(1,41)] # G. C. Greubel, Feb 08 2023

Formula

a(n) = 7*A001109(n-1) + [n=1].
G.f.: x*(1+x+x^2)/(1-6*x+x^2).
a(n) = A001109(n) + A001109(n-1) + A001109(n-2), n>1. - Ralf Stephan, Apr 26 2003

A201157 y-values in the solution to 5*x^2 - 20 = y^2.

Original entry on oeis.org

0, 5, 15, 40, 105, 275, 720, 1885, 4935, 12920, 33825, 88555, 231840, 606965, 1589055, 4160200, 10891545, 28514435, 74651760, 195440845, 511670775, 1339571480, 3507043665, 9181559515, 24037634880, 62931345125, 164756400495, 431337856360, 1129257168585
Offset: 1

Views

Author

Sture Sjöstedt, Nov 27 2011

Keywords

Comments

Except a(1), the same as A054888. - R. J. Mathar, Nov 28 2011

Examples

			15 is in the sequence because 15^2 = 5*7^2 - 20.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -1}, {0, 5}, 50]

Formula

a(n) = 3*a(n-1) - a(n-2), n>2.
G.f.: 5*x^2 / (x^2 - 3*x + 1). - Colin Barker, Apr 08 2013
a(n) = 5*Fibonacci(2*n-2) = Lucas(2*n-1) + Lucas(2*n-3) with Lucas(-1) = -1. - Bruno Berselli, Feb 15 2017
a(n) = Lucas(n)^2 - Lucas(n-2)^2. - Greg Dresden, Apr 15 2022

Extensions

More terms from Colin Barker, Apr 08 2013

A075269 Product of Lucas numbers and inverted Lucas numbers: a(n)=A000032(n)*A075193(n).

Original entry on oeis.org

2, -3, 12, -28, 77, -198, 522, -1363, 3572, -9348, 24477, -64078, 167762, -439203, 1149852, -3010348, 7881197, -20633238, 54018522, -141422323, 370248452, -969323028, 2537720637, -6643838878, 17393796002, -45537549123, 119218851372, -312119004988, 817138163597
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 11 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2 + x + 2x^2)/(1 + 2x - 2x^2 - x^3), {x, 0, 30}], x]
    LinearRecurrence[{-2,2,1},{2,-3,12},30] (* Harvey P. Dale, Jun 30 2022 *)
  • PARI
    a(n)=1+(-1)^n*(fibonacci(2*n)+fibonacci(2*n+2))

Formula

a(n) = 1 + (-1)^n*A002878(n).
From Michael Somos, Apr 07 2003: (Start)
G.f.: (2+x+2x^2)/((1+3x+x^2)(1-x)).
a(n) = -3a(n-1) - a(n-2)+5 = -2a(n-1) + 2a(n-2) + a(n-3) = a(-1-n). (End)
Sum_{n>=0} 1/a(n) = sqrt(5)/10. - Amiram Eldar, Jan 15 2022
a(n) = (-1)^n*A215602(n). - R. J. Mathar, Jul 09 2024
a(n) - a(n-1) = (-1)^n* A054888(n), n>0. - R. J. Mathar, Jul 09 2024

A237655 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n-2)*Fibonacci(n+2) * x^n/n ).

Original entry on oeis.org

1, 10, 50, 175, 510, 1376, 3625, 9500, 24875, 65125, 170500, 446375, 1168625, 3059500, 8009875, 20970125, 54900500, 143731375, 376293625, 985149500, 2579154875, 6752315125, 17677790500, 46281056375, 121165378625, 317215079500, 830479859875, 2174224500125, 5692193640500, 14902356421375, 39014875623625
Offset: 0

Views

Author

Paul D. Hanna, May 05 2014

Keywords

Comments

Given g.f. A(x), note that A(x)^(1/5) is not an integer series.

Examples

			G.f.: A(x) = 1 + 10*x + 50*x^2 + 175*x^3 + 510*x^4 + 1376*x^5 + 3625*x^6 + ...
where the logarithm begins:
log(A(x)) = 5*1*2*x + 5*0*3*x^2/2 + 5*1*5*x^3/3 + 5*1*8*x^4/4 + 5*2*13*x^5/5 + 5*3*21*x^6/6 + 5*5*34*x^7/7 + 5*8*55*x^8/8 + 5*13*89*x^9/9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, 5*fibonacci(m-2)*fibonacci(m+2) *x^m/m) +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: (1+x)^7 / (1-3*x+x^2).
a(n) = 3*a(n-1) - a(n-2), n>=8. - Fung Lam, May 19 2014

A247308 Layer counting sequence in the order-5 cubic honeycomb.

Original entry on oeis.org

1, 7, 37, 163, 661, 2643, 10497, 41511, 164073, 648495, 2562749, 10127291, 40020845, 158152811, 624980489, 2469769903, 9759926065, 38568829879, 152414547541, 602304889075, 2380161078405, 9405812345187, 37169461719153, 146884589311479, 580451843386809, 2293803210617951, 9064547264192237, 35820865853787467
Offset: 0

Views

Author

Tim Hutton, Sep 11 2014

Keywords

Comments

The number of cubes reachable by at most n steps across faces in the {4,3,5} tessellation of hyperbolic space, for n >= 0.

Crossrefs

For the {5,3,4} tessellation: A076765.
For the {5,4} tessellation: A054888.

Formula

a(d+17) = 3*a(d+16) + 2*a(d+15) + 7*a(d+14) + a(d+13) - 5*a(d+12) + 3*a(d+11) - 2*a(d+10) - 18*a(d+9) + 18*a(d+8) + 2*a(d+7) - 3*a(d+6) + 5*a(d+5) - a(d+4) - 7*a(d+3) - 2*a(d+2) - 3*a(d+1) + a(d) (conjectured, found experimentally and tested from 19 to 135). - Eryk Kopczynski, Jul 04 2020
Conjectured G.f.: (1+x) * (1+2*x+8*x^2+9*x^3+8*x^4+17*x^5+10*x^6+10*x^8+10*x^10+17*x^11+8*x^12+9*x^13+8*x^14+2*x^15+x^16) / ((1-x)^2 * (1-2*x-4*x^2-11*x^3-12*x^4-7*x^5-10*x^6-8*x^7+10*x^8-8*x^9-10*x^10-7*x^11-12*x^12-11*x^13-4*x^14-2*x^15+x^16)). - Natalia L. Skirrow, Apr 29 2025

Extensions

Offset and terms corrected and more terms added by Eryk Kopczynski, Jul 04 2020

A237654 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n-1)*Fibonacci(n+1) * x^n/n ).

Original entry on oeis.org

1, 0, 5, 5, 25, 49, 150, 365, 990, 2550, 6726, 17550, 46015, 120390, 315275, 825299, 2160775, 5656855, 14809980, 38772875, 101508876, 265753500, 695751900, 1821501900, 4768754125, 12484760124, 32685526625, 85571819345, 224029931845, 586517975725, 1535523995826, 4020054011225, 10524638038410
Offset: 0

Views

Author

Paul D. Hanna, May 05 2014

Keywords

Comments

Compare to the g.f. of A054888.
Given g.f. A(x), note that A(x)^(1/5) is not an integer series.

Examples

			G.f.: A(x) = 1 + 5*x^2 + 5*x^3 + 25*x^4 + 49*x^5 + 150*x^6 + 365*x^7 + ...
where the logarithm begins:
log(A(x)) = 5*1*2*x^2/2 + 5*1*3*x^3/3 + 5*2*5*x^4/4 + 5*3*8*x^5/5 + 5*5*13*x^6/6 + 5*8*21*x^7/7 + 5*13*34*x^8/8 + ...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,5,5,0,-1},{1,0,5,5,25},40] (* Harvey P. Dale, Apr 17 2025 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, 5*fibonacci(m-1)*fibonacci(m+1)*x^m/m) + x*O(x^n)), n)}
    for(n=0,36,print1(a(n),", "))

Formula

G.f.: 1 / ( (1-3*x+x^2) * (1+x)^3 ).
a(n) = (2*Lucas(2*n+5) + (28+25*n+5*n^2)*(-1)^(n))/50 where Lucas = A000032. - Greg Dresden, Jan 01 2021

A377322 Number of cells that are a distance of n away in an order-5 hyperbolic square tiling.

Original entry on oeis.org

1, 4, 12, 28, 64, 148, 340, 780, 1792, 4116, 9452, 21708, 49856, 114500, 262964, 603932, 1387008, 3185444, 7315788, 16801660, 38587200, 88620532, 203528596, 467429932, 1073513728, 2465464116, 5662259500, 13004116524, 29865647552, 68590349988, 157526673524
Offset: 0

Views

Author

Lewis Chen, Oct 24 2024

Keywords

Comments

Also known as a {4,5} tiling.
The formula given in the MathOverflow answer (4 * A033303) is erroneous after n=3.

Crossrefs

Cf. A008574, A054888 (dual).

Programs

  • PARI
    Vec((1 + 2*x + 4*x^2 + 2*x^3 + x^4)/(1 - 2*x - 2*x^3 + x^4) + O(x^31)) \\ Andrew Howroyd, Feb 12 2025

Formula

G.f.: (1 + 2*x + 4*x^2 + 2*x^3 + x^4)/(1 - 2*x - 2*x^3 + x^4). - Andrew Howroyd, Feb 12 2025

Extensions

a(20) onwards from Andrew Howroyd, Feb 12 2025
Previous Showing 11-17 of 17 results.