A054890
Layer counting sequence for hyperbolic tessellation by regular heptagons of angle Pi/3.
Original entry on oeis.org
1, 7, 42, 245, 1428, 8323, 48510, 282737, 1647912, 9604735, 55980498, 326278253, 1901689020, 11083855867, 64601446182, 376524821225, 2194547481168, 12790760065783, 74550012913530, 434509317415397
Offset: 1
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
- Michael De Vlieger, Table of n, a(n) for n = 1..1307
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Index entries for Coordination Sequences [A layer sequence is a kind of coordination sequence. - _N. J. A. Sloane_, Nov 20 2022]
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
-
[n eq 1 select 1 else 7*Evaluate(ChebyshevSecond(n-1), 3): n in [1..40]]; // G. C. Greubel, Feb 08 2023
-
Rest@CoefficientList[Series[x*(1+x+x^2)/(1-6*x+x^2), {x,0,30}], x] (* Michael De Vlieger, Dec 29 2020 *)
LinearRecurrence[{6,-1},{1,7,42},20] (* Harvey P. Dale, Jun 06 2021 *)
-
[7*chebyshev_U(n-2, 3) + int(n==1) for n in range(1,41)] # G. C. Greubel, Feb 08 2023
A201157
y-values in the solution to 5*x^2 - 20 = y^2.
Original entry on oeis.org
0, 5, 15, 40, 105, 275, 720, 1885, 4935, 12920, 33825, 88555, 231840, 606965, 1589055, 4160200, 10891545, 28514435, 74651760, 195440845, 511670775, 1339571480, 3507043665, 9181559515, 24037634880, 62931345125, 164756400495, 431337856360, 1129257168585
Offset: 1
15 is in the sequence because 15^2 = 5*7^2 - 20.
- Michael De Vlieger, Table of n, a(n) for n = 1..2392
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Index entries for linear recurrences with constant coefficients, signature (3,-1).
-
LinearRecurrence[{3, -1}, {0, 5}, 50]
A075269
Product of Lucas numbers and inverted Lucas numbers: a(n)=A000032(n)*A075193(n).
Original entry on oeis.org
2, -3, 12, -28, 77, -198, 522, -1363, 3572, -9348, 24477, -64078, 167762, -439203, 1149852, -3010348, 7881197, -20633238, 54018522, -141422323, 370248452, -969323028, 2537720637, -6643838878, 17393796002, -45537549123, 119218851372, -312119004988, 817138163597
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Sep 11 2002
-
CoefficientList[Series[(2 + x + 2x^2)/(1 + 2x - 2x^2 - x^3), {x, 0, 30}], x]
LinearRecurrence[{-2,2,1},{2,-3,12},30] (* Harvey P. Dale, Jun 30 2022 *)
-
a(n)=1+(-1)^n*(fibonacci(2*n)+fibonacci(2*n+2))
A237655
G.f.: exp( Sum_{n>=1} 5*Fibonacci(n-2)*Fibonacci(n+2) * x^n/n ).
Original entry on oeis.org
1, 10, 50, 175, 510, 1376, 3625, 9500, 24875, 65125, 170500, 446375, 1168625, 3059500, 8009875, 20970125, 54900500, 143731375, 376293625, 985149500, 2579154875, 6752315125, 17677790500, 46281056375, 121165378625, 317215079500, 830479859875, 2174224500125, 5692193640500, 14902356421375, 39014875623625
Offset: 0
G.f.: A(x) = 1 + 10*x + 50*x^2 + 175*x^3 + 510*x^4 + 1376*x^5 + 3625*x^6 + ...
where the logarithm begins:
log(A(x)) = 5*1*2*x + 5*0*3*x^2/2 + 5*1*5*x^3/3 + 5*1*8*x^4/4 + 5*2*13*x^5/5 + 5*3*21*x^6/6 + 5*5*34*x^7/7 + 5*8*55*x^8/8 + 5*13*89*x^9/9 + ...
-
{a(n)=polcoeff(exp(sum(m=1, n, 5*fibonacci(m-2)*fibonacci(m+2) *x^m/m) +x*O(x^n)), n)}
for(n=0,30,print1(a(n),", "))
A247308
Layer counting sequence in the order-5 cubic honeycomb.
Original entry on oeis.org
1, 7, 37, 163, 661, 2643, 10497, 41511, 164073, 648495, 2562749, 10127291, 40020845, 158152811, 624980489, 2469769903, 9759926065, 38568829879, 152414547541, 602304889075, 2380161078405, 9405812345187, 37169461719153, 146884589311479, 580451843386809, 2293803210617951, 9064547264192237, 35820865853787467
Offset: 0
For the {5,3,4} tessellation:
A076765.
For the {5,4} tessellation:
A054888.
Offset and terms corrected and more terms added by
Eryk Kopczynski, Jul 04 2020
A237654
G.f.: exp( Sum_{n>=1} 5*Fibonacci(n-1)*Fibonacci(n+1) * x^n/n ).
Original entry on oeis.org
1, 0, 5, 5, 25, 49, 150, 365, 990, 2550, 6726, 17550, 46015, 120390, 315275, 825299, 2160775, 5656855, 14809980, 38772875, 101508876, 265753500, 695751900, 1821501900, 4768754125, 12484760124, 32685526625, 85571819345, 224029931845, 586517975725, 1535523995826, 4020054011225, 10524638038410
Offset: 0
G.f.: A(x) = 1 + 5*x^2 + 5*x^3 + 25*x^4 + 49*x^5 + 150*x^6 + 365*x^7 + ...
where the logarithm begins:
log(A(x)) = 5*1*2*x^2/2 + 5*1*3*x^3/3 + 5*2*5*x^4/4 + 5*3*8*x^5/5 + 5*5*13*x^6/6 + 5*8*21*x^7/7 + 5*13*34*x^8/8 + ...
-
LinearRecurrence[{0,5,5,0,-1},{1,0,5,5,25},40] (* Harvey P. Dale, Apr 17 2025 *)
-
{a(n)=polcoeff(exp(sum(m=1, n, 5*fibonacci(m-1)*fibonacci(m+1)*x^m/m) + x*O(x^n)), n)}
for(n=0,36,print1(a(n),", "))
A377322
Number of cells that are a distance of n away in an order-5 hyperbolic square tiling.
Original entry on oeis.org
1, 4, 12, 28, 64, 148, 340, 780, 1792, 4116, 9452, 21708, 49856, 114500, 262964, 603932, 1387008, 3185444, 7315788, 16801660, 38587200, 88620532, 203528596, 467429932, 1073513728, 2465464116, 5662259500, 13004116524, 29865647552, 68590349988, 157526673524
Offset: 0
Comments