cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 65 results. Next

A362953 Numbers N such that N + the sum of the cubes of its digits is again a third power.

Original entry on oeis.org

0, 34, 352, 540, 1167, 1942, 2176, 3312, 4093, 5454, 8019, 9380, 12025, 12130, 13068, 13158, 15344, 15991, 16279, 16675, 21149, 22699, 22789, 30988, 32257, 32365, 35238, 37883, 37955, 41866, 45549, 54523, 57906, 58530, 62579, 72588, 83692, 83782, 89604, 102952
Offset: 0

Views

Author

Will Gosnell and M. F. Hasler, May 09 2023

Keywords

Examples

			The sum of the cubes of the digits of N = 34 is 3^3 + 4^3 = 27 + 64 = 91; added to the number N itself yields  125 which is again a cube, 5^3. Therefore 34 is in this sequence.
		

Crossrefs

Cf. A000578 (the cubes), A055012 (sum of cubes of decimal digits of n).
Cf. A362954 (the same for 4th powers).

Programs

  • PARI
    select( {is(n,p=3)=ispower(vecsum([d^p|d<-digits(n)])+n,p)}, [0..10^5])
    
  • Python
    aupto = 103000
    A362953 = []
    A000578 = set(cu**3 for cu in range(0, int(aupto**(1/3)+3)))
    for n in range(0,aupto+1):
        if n + sum(int(digit)**3 for digit in str(n)) in A000578: A362953.append(n)
    print(A362953) # Karl-Heinz Hofmann, May 24 2023

A065137 Sum of digits of n plus sum of cubes of digits of n.

Original entry on oeis.org

0, 2, 10, 30, 68, 130, 222, 350, 520, 738, 2, 4, 12, 32, 70, 132, 224, 352, 522, 740, 10, 12, 20, 40, 78, 140, 232, 360, 530, 748, 30, 32, 40, 60, 98, 160, 252, 380, 550, 768, 68, 70, 78, 98, 136, 198, 290, 418, 588, 806, 130, 132, 140, 160, 198, 260, 352, 480, 650
Offset: 0

Views

Author

Henry Bottomley, Oct 15 2001

Keywords

Examples

			a(23) = (2+3)+(2^3+3^3) = 40.
		

Crossrefs

Cf. A065138.

Programs

  • Mathematica
    Table[Total[IntegerDigits[n]]+Total[IntegerDigits[n]^3],{n,0,60}] (* Harvey P. Dale, Jul 15 2017 *)

Formula

a(n) = A007953(n)+A055012(n)

A067170 Numbers n such that sum of the cubes of the distinct prime factors of n equals the sum of the cubes of the digits of n.

Original entry on oeis.org

2, 3, 5, 7, 250, 735, 2500, 25000, 250000, 1858560, 2500000, 18585600, 25000000, 91990080, 185856000, 242121642, 250000000, 919900800, 1081088775, 1390120992, 1768635648, 1858560000, 2500000000, 5435938431, 7245987840, 9199008000, 9475854336, 17996666688, 18585600000, 24214634829, 25000000000
Offset: 1

Views

Author

Joseph L. Pe, Feb 18 2002

Keywords

Comments

If 10*m is a term (e.g. m = 25, 185856, 9199008), then 10^k * m is a term for all k >= 1. Therefore this sequence is infinite. - Amiram Eldar, Sep 28 2019
The sum of cubes of digits of a k-digit number is at most 729*k. Therefore any term with at most k digits is p-smooth where p is the largest prime < (729*k)^(1/3). - David A. Corneth, Sep 28 2019

Examples

			The prime factors of 735 are 3,5,7, the sum of whose cubes = 495 = sum of the cubes of the digits of 735; so 735 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{a, l, t, r}, a = FactorInteger[n]; l = Length[a]; t = Table[a[[i]][[1]], {i, 1, l}]; r = Sum[(t[[i]])^3, {i, 1, l}]]; g[n_] := Module[{b, m, s}, b = IntegerDigits[n]; m = Length[b]; s = Sum[(b[[i]])^3, {i, 1, m}]]; Select[Range[2, 10^6], f[ # ] == g[ # ] &]
  • PARI
    sd(n) = my(d=digits(n)); sum(k=1, #d, d[k]^3); \\ A055012
    sp(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1]^3); \\ A005064
    isok(n) = sp(n) == sd(n); \\ Michel Marcus, Sep 28 2019

Extensions

a(10)-a(14) from Amiram Eldar, Sep 28 2019
a(15)-a(18) from Michel Marcus, Sep 28 2019
a(20)-a(29) from David A. Corneth, Sep 28 2019
Missing a(19) from Giovanni Resta, Sep 28 2019

A072082 Numbers divisible by the cube of the sum of their digits in base 10.

Original entry on oeis.org

1, 10, 100, 200, 500, 512, 1000, 2000, 2401, 4913, 5000, 5103, 5120, 5832, 10000, 10206, 11000, 11200, 11664, 13122, 14000, 17576, 19000, 19683, 20000, 20412, 21141, 23000, 23328, 24010, 28000, 29160, 32000, 37000, 39366, 40000, 40824
Offset: 1

Views

Author

Labos Elemer, Jun 14 2002

Keywords

Comments

If k is a term, then 10 * k is a term. There are an infinite number of terms that are not divisible by 10. The numbers m = 24 * 10^(294 * k - 292) +1 are divisible by 7^3 = digsum(m)^3. Also, the numbers s = 491 * 10^(4624 * k - 4623) + 3, k >= 1, are divisible by 17^3 = digsum(s)^3. - Marius A. Burtea, Mar 18 2020

Examples

			k=98415: sumdigits(98415)=27, q=98415=5*27*27*27.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..41000]| k mod &+Intseq(k)^3 eq 0]; // Marius A. Burtea, Mar 18 2020
    
  • Mathematica
    sud[x_] := Apply[Plus, IntegerDigits[x]] Do[s=sud[n]^3; If[IntegerQ[n/s], Print[n]], {n, 1, 10000}]
    Select[Range[50000],Divisible[#,Total[IntegerDigits[#]]^3]&] (* Harvey P. Dale, Mar 22 2016 *)
  • PARI
    is(n)=n%sumdigits(n)^3==0 \\ Charles R Greathouse IV, Mar 19 2020

A072884 3rd-order digital invariants: the sum of the cubes of the digits of n equals some number k and the sum of the cubes of the digits of k equals n.

Original entry on oeis.org

1, 136, 153, 244, 370, 371, 407, 919, 1459
Offset: 1

Views

Author

Keywords

Examples

			136 is included because 1^3 + 3^3 + 6^3 = 244 and 2^3 + 4^3 + 4^3 = 136.
244 is included because 2^3 + 4^3 + 4^3 = 136 and 1^3 + 3^6 + 6^3 = 244.
		

References

  • J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 257 pp. 41; 185 Ellipses Paris 2004.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, London, England, 1997, pp. 124-125.

Crossrefs

Cf. A072409.

Programs

  • Mathematica
    f[n_] := Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[n]^3]]^3]; Select[ Range[10^7], f[ # ] == # &]
    Select[Range[10000], Plus@@(IntegerDigits[Plus@@(IntegerDigits[ # ]^3)]^3)== #&]

Formula

k such that f(f(k)) = k, where f(k) = A055012(k). - Lekraj Beedassy, Sep 10 2004

A165551 Sum of cube of digits is sum of digits of cube.

Original entry on oeis.org

0, 1, 2, 10, 20, 31, 100, 103, 123, 200, 203, 301, 302, 310, 1000, 1003, 1030, 1230, 1302, 1312, 1321, 2000, 2003, 2030, 2312, 3001, 3002, 3010, 3020, 3032, 3100, 3112, 3211, 3213, 3221, 10000, 10003, 10030, 10033, 10232, 10300, 10303, 11223, 12033
Offset: 0

Views

Author

Rémy Sigrist, Sep 21 2009

Keywords

Examples

			For n=31, n^3=29791, sum of digits of cube is 2+9+7+9+1=28, sum of cube of digits is 3^3+1=27+1=28, thus 31 appears in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,13000],Total[IntegerDigits[#^3]]==Total[IntegerDigits[ #]^3]&] (* Harvey P. Dale, Nov 13 2011 *)
  • PARI
    cubdigsum(n) = local(s=0);while(n,s=s+(n%10)^3;n=n\10);return(s)
    for(n=0,100000, if(cubdigsum(n)==sumdigits(n^3), print1(n, ",") ) )

A169662 Numbers divisible by the sum of their digits, and by the sum of their digits squared, by the sum of their digits cubed and by the sum of 4th powers of their digits.

Original entry on oeis.org

1, 10, 100, 110, 111, 1000, 1010, 1011, 1100, 1101, 1110, 2000, 5000, 10000, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11100, 20000, 50000, 55000, 100000, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101100
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Comments

The numbers such that all digits are nonzero are rare (see the subsequence A176194).

Examples

			1121211 is a term since 1^4 + 1^4 + 2^4 + 1^4 + 2^4 + 1^4 + 1^4 = 37 and 1121211 = 37*30303 ; 1^3 + 1^3 + 2^3 + 1^3 + 2^3 + 1^3 + 1^3 = 21 and 1121211 = 21*53391 ; 1^2 + 1^2 + 2^2 + 1^2 + 2^2 + 1^2 + 1^2 = 13 and 1121211 = 13* 86247 ; 1 + 1 + 2 + 1 + 2 + 1 + 1 = 9 and 1121211 = 9*124579.
		

Crossrefs

Intersection of A005349, A034087, A034088 and A169665.

Programs

  • Maple
    isA169662 := proc(n)
            dgs := convert(n,base,10) ;
            if (n mod ( add(d,d=dgs) ) = 0)  and (n mod (add(d^2,d=dgs) )) =0 and (n mod (add(d^3,d=dgs))) =0 and (n mod (add(d^4,d=dgs))) = 0 then
                    true;
            else
                    false;
            end if;
    end proc:
    for i from 1 to 110000 do
            if isA169662(i) then
                    printf("%d,",i) ;
            end if;
    end do: # R. J. Mathar, Nov 07 2011
  • Mathematica
    q[n_] := And @@ Divisible[n, Plus @@@ Transpose @ Map[#^Range[4] &, IntegerDigits[n]]]; Select[Range[10^5], q] (* Amiram Eldar, Jan 31 2021 *)

Formula

{n : A007953(n)|n and A003132(n)|n and A055012(n)| n and A055013(n)| n}.

A176194 Numbers with no zero digits divisible by the sum of the k-th powers of their digits, for each k = 1,2,3,4.

Original entry on oeis.org

1, 111, 1121211, 11243232, 12132432, 12413232, 22331232, 23111352, 23411232, 24113232, 41223312, 42131232, 44662464, 111111111, 112452144, 114251424, 135964224, 211412544, 246134592, 313212312, 332131212, 382941675, 416283624, 442114512, 523173456, 671635575, 979652772
Offset: 1

Views

Author

Michel Lagneau, Apr 11 2010

Keywords

Comments

For the numbers divisible by the sum of k-th powers of digits including 0, see A169662. The numbers such that the digits are > 0 are rare.

Examples

			For n = 246134592 we obtain :
2^4 + 4^4 + 6^4 + 1^4 + 3^4 + 4^4 + 5^4 + 9^4 + 2^4 = 9108, and 246134592 = 9108*27024 ;
2^3 + 4^3 + 6^3 + 1^3 + 3^3 + 4^3 + 5^3 + 9^3 + 2^3 = 1242, and 246134592 = 1242*198176 ;
2^2 + 4^2 + 6^2 + 1^2 + 3^2 + 4^2 + 5^2 + 9^2 + 2^2 = 192, and 246134592 = 192*1281951 ;
2 + 4 + 6 + 1 + 3 + 4 + 5 + 9 + 2 = 36, and 246134592 = 36*6837072.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 500000000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:s4:=0:p:=1:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:p:=p*u:s2:=s2+u^2:s3:=s3+u^3:s4:=s4+u^4: od:if irem(n,s1)=0 and irem(n,s2)=0 and irem(n,s3)=0 and irem(n,s4)=0 and p<>0 then print(n):else fi:od:

Formula

A007953 (n)|n and A003132(n)|n and A055012 (n)| n and A055013 (n)| n and all digits < > 0.

Extensions

a(1)-a(2) and more terms add by Amiram Eldar, Apr 20 2023

A182111 Number of iterations of the map n -> sum of the cubes of the decimal digits of n.

Original entry on oeis.org

1, 7, 3, 6, 6, 10, 6, 6, 4, 1, 8, 5, 5, 6, 10, 3, 8, 2, 2, 7, 5, 4, 7, 3, 3, 8, 2, 4, 3, 3, 5, 7, 6, 3, 6, 6, 1, 8, 6, 6, 6, 3, 3, 7, 5, 5, 1, 6, 4, 6, 10, 3, 6, 5, 3, 5, 5, 8, 10, 10, 3, 8, 6, 5, 5, 6, 7, 11, 6, 6, 8, 2, 1, 1, 5, 7, 7, 8, 4, 6, 2, 4, 8, 6, 8
Offset: 1

Views

Author

Michel Lagneau, Apr 12 2012

Keywords

Comments

a(n) is the number of times you obtain the sums of cubes of digits of n before reaching a fixed point (last number of the cycle).

Examples

			a(3) = 3 because :
3^3  = 27 -> 2^3 + 7^3 = 351;
351 -> 3^3 + 5^3 + 1^3 = 153;
153 -> 1^3+5^3+3^3 = 153 is the end because this number is already in the trajectory. Hence we obtain the map : 3 -> 27 -> 351 -> 153 with 3 iterations.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local k, m, s; m:= n; s:= {};
          for k from 0 do
            m:= add(i^3, i=convert(m, base, 10));
            if m in s then return k fi;
            s:= s union {m}
          od
        end:
    seq(a(n), n=1..85);  # Alois P. Heinz, Mar 01 2018

A225808 Values (Sum_{1<=i<=k} x_i)^2 = Sum_{1<=i<=k} x_i^3 for 1 <= x_1 <= x_2 <=...<= x_k ordered lexicographically according to (x1, x2,..., xk).

Original entry on oeis.org

1, 9, 16, 36, 81, 81, 100, 144, 256, 169, 225, 324, 361, 625, 144, 256, 324, 441, 324, 361, 441, 625, 256, 576, 729, 784, 576, 729, 900, 961, 1089, 1296, 484, 625, 784, 900, 484, 441, 576, 729, 784, 900, 1089, 1089, 1156, 1369, 625, 784, 729, 900, 1089, 1369, 1296, 1600, 900, 961, 1089
Offset: 1

Views

Author

Keywords

Comments

a(n) <= k^4 where k is the size of the ordered tuple (x_1, x_2,..., x_k).
This sequence is closed under multiplication, that is, if m and n are in this sequence, so is m*n.

Examples

			1;
9, 16;
36, 81;
81, 100, 144, 256;
169, 225, 324, 361, 625;
144, 256, 324, 441, 324, 361, 441, 625, 256, 576, 729, 784, 576, 729, 900, 961, 1089, 1296;
484, 625, 784, 900, 484, 441, 576, 729, 784, 900, 1089, 1089, 1156, 1369, 625, 784, 729, 900, 1089, 1369, 1296, 1600, 900, 961, 1089, 1600, 1296, 1600, 2025, 2401;
		

Crossrefs

Programs

  • Mathematica
    row[n_] := Reap[Module[{v, m}, v = Table[1, {n}]; m = n^(4/3); While[ v[[-1]] < m, v[[1]]++; If[v[[1]] > m, For[i = 2, i <= m, i++, If[v[[i]] < m, v[[i]]++; For[j = 1, j <= i - 1, j++, v[[j]] = v[[i]]]; Break[]]]]; If[Total[v^3] == Total[v]^2, Sow[Total[v]^2]]]]][[2, 1]];
    Array[row, 7] // Flatten (* Jean-François Alcover, Feb 23 2019, from PARI *)
  • PARI
    row(n)=my(v=vector(n,i,1),N=n^(4/3)); while(v[#v]N,for(i=2, N,if(v[i]
    				
Previous Showing 31-40 of 65 results. Next