cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 508 results. Next

A004427 Arithmetic mean of digits of n (rounded up).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 1, 1, 1, 2, 2, 2, 3, 3
Offset: 0

Views

Author

Keywords

Comments

a(100)=1 is the first value that differs from the variant "... rounded to the nearest integer". - M. F. Hasler, May 10 2015

Crossrefs

Programs

  • Mathematica
    Ceiling[Mean[IntegerDigits[#]]]&/@Range[0,110] (* Harvey P. Dale, Aug 29 2014 *)
  • PARI
    A004427(n)=ceil(sum(i=1, #n=digits(n), n[i])/#n) \\ ...Vecsmall(Str(n))...-48 is a little faster. \\ M. F. Hasler, May 10 2015

Formula

From Reinhard Zumkeller, May 27 2010: (Start)
a(n) = ceiling(A007953(n)/A055642(n)); a(A000040(n)) = A074462(n);
A004426(n) <= a(n) with equality for n in A061383;
a(A178361(n)) = 1; a(A178362(n)) = 2; a(A178363(n)) = 3; a(A178364(n)) = 4; a(A178365(n)) = 5; a(A178366(n)) = 6; a(A178367(n)) = 7; a(A178368(n)) = 8; a(A178369(n)) = 9. (End)

A032810 Numbers using only digits 2 and 3.

Original entry on oeis.org

2, 3, 22, 23, 32, 33, 222, 223, 232, 233, 322, 323, 332, 333, 2222, 2223, 2232, 2233, 2322, 2323, 2332, 2333, 3222, 3223, 3232, 3233, 3322, 3323, 3332, 3333, 22222, 22223, 22232, 22233, 22322, 22323, 22332, 22333, 23222, 23223
Offset: 1

Views

Author

Keywords

Comments

Identical to A007931 with substitution of digits 2 -> 3, 1 -> 2, i.e., application of the function A048379 or A256079(n) = n + A002275(A055642(n)). - M. F. Hasler, Mar 21 2015

Crossrefs

Cf. A020458, A143967, A248907 (permutation).
Cf. A032804-A032816 (in other bases), A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9).

Programs

  • Haskell
    a032810 = f 0 . (+ 1) where
       f y 1 = a004086 y
       f y x = f (10 * y + m + 2) x' where (x', m) = divMod x 2
    -- Reinhard Zumkeller, Mar 18 2015
    
  • Magma
    [n: n in [1..24000] | Set(Intseq(n)) subset {2, 3}]; // Vincenzo Librandi, May 27 2012
    
  • Magma
    [n eq 1 select 2 else IsOdd(n) select 10*Self(Floor(n/2))+2 else Self(n-1)+1: n in [1..40]]; // Bruno Berselli, May 27 2012
    
  • Mathematica
    Flatten[Table[FromDigits[#,10]&/@Tuples[{2,3},n],{n,5}]] (* Vincenzo Librandi, May 27 2012 *)
  • PARI
    A032810(n)=vector(#n=binary(n+1)[2..-1],i,10^(#n-i))*n~+10^#n\9*2 \\ M. F. Hasler, Mar 26 2015
    
  • Python
    def A032810(n): return int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1<<1)//9 # Chai Wah Wu, Jul 15 2023

Formula

a(n) = f(n+1, 0) with f(n, x) = if n=1 then A004086(x) else f(floor(n/2), 10*x + 2 + n mod 2). - Reinhard Zumkeller, Sep 06 2008
a(n) is Theta(n^(log_2 10)); there are about n^(log_10 2) members of this sequence up to n. - Charles R Greathouse IV, Mar 18 2010
a(n) = A007931(n) + A002275(A000523(n+1)). A055642(a(n)) = A000523(n+1). - M. F. Hasler, Mar 21 2015

A047726 Number of different numbers that are formed by permuting digits of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 6
Offset: 1

Views

Author

Keywords

Comments

The minimum value of a(A171102(n)) is 10*9!. - Altug Alkan, Jul 08 2016

Examples

			From 102 we get 102, 120, 210, 201, 12 and 21, so a(102)=6.
From 33950 with 5 digits, one '0', two '3', one '5' and one '9', we get 5! / (1! * 2! * 1! * 1!) = 60 different numbers and a(33950) = 60.  - _Bernard Schott_, Oct 20 2019
		

Crossrefs

Cf. A055098. Identical to A043537 and A043562 for n<100.
Cf. A179239. - Aaron Dunigan AtLee, Jul 14 2010

Programs

  • Haskell
    import Data.List (permutations, nub)
    a047726 n = length $ nub $ permutations $ show n
    -- Reinhard Zumkeller, Jul 26 2011
    
  • Maple
    f:= proc(n) local L;
      L:= convert(n,base,10);
      nops(L)!/mul(numboccur(i,L)!,i=0..9);
    end proc:
    map(f, [$1..1000]); # Robert Israel, Jul 08 2016
  • Mathematica
    pd[n_]:=Module[{p=Permutations[IntegerDigits[n]]},Length[Union [FromDigits/@p]]]; pd/@Range[120]  (* Harvey P. Dale, Mar 22 2011 *)
  • PARI
    a(n)=n=eval(Vec(Str(n)));(#n)!/prod(i=0,9,sum(j=1,#n,n[j]==i)!) \\ Charles R Greathouse IV, Sep 29 2011
    
  • PARI
    A047726(n)={local(c=Vec(0,10)); apply(d->c[d+1]++, digits(n)); logint(n*10,10)!/prod(i=1,10,c[i]!)} \\ M. F. Hasler, Oct 18 2019

Formula

a(n) << n / (log_10 n)^4.5 by Stirling's approximation. - Charles R Greathouse IV, Sep 29 2011
a(n) = A000142(A055642(n))/Product_{k=0..9} A000142(A100910(n,k)). - Robert Israel, Jul 08 2016

Extensions

Corrected by Henry Bottomley, Apr 19 2000

A160093 Number of digits in n, excluding any trailing zeros.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Anonymous, May 01 2009

Keywords

Examples

			a(1060000) = 3 because discarding the trailing zeros from 1060000 leaves 106, which is a 3-digit number.
		

Crossrefs

Programs

  • Mathematica
    lnzd[n_]:=Module[{spl=Last[Split[IntegerDigits[n]]]},If[!MemberQ[ spl,0], IntegerLength[n], IntegerLength[n]-Length[spl]]]; Array[lnzd,110] (* Harvey P. Dale, Jun 05 2013 *)
    Table[IntegerLength[n] - IntegerExponent[n, 10], {n, 100}] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n)=if(n==0,1,#digits(n/10^valuation(n,10))) \\ Joerg Arndt, Jan 11 2017
    
  • PARI
    a(n)=logint(n,10)+1-valuation(n,10) \\ Charles R Greathouse IV, Jan 12 2017
  • Python
    def A160093(n):
         return len(str(int(str(n)[::-1]))) # Indranil Ghosh, Jan 11 2017
    

Formula

From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = 1 + Sum_{j=0..m} ceiling(frac(n/10^j)).
a(n) = 1 - Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n)= A055642(n) + A054899(n-1) - A054899(n).
G.f.: (x/(1-x)) + (1/(1-x))*Sum_{j>0} x^(10^j+1)*(1 - x^(10^j-1))/(1-x^10^j). (End)
a(n) = A055642(A004086(n)). - Indranil Ghosh, Jan 11 2017
a(n) = A055642(A004151(n)). - Amiram Eldar, Sep 14 2020

Extensions

Simpler definition and changed example from Jon E. Schoenfield, Feb 15 2014

A034887 Number of digits in 2^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22
Offset: 0

Views

Author

Keywords

Comments

The sequence consists of the positive integers, each appearing 3 or 4 times. - M. F. Hasler, Oct 08 2016

Crossrefs

See A125117 for the sequence of first differences.

Programs

  • Magma
    [#Intseq(2^n): n in [0..100] ]; // Vincenzo Librandi, Jun 23 2015
    
  • Maple
    seq(floor(n*ln(2)/ln(10))+1, n=0..100); # Jaap Spies, Dec 11 2003
  • Mathematica
    Table[Length[IntegerDigits[2^n]], {n, 0, 100}] (* T. D. Noe, Feb 11 2013 *)
    IntegerLength[2^Range[0,80]] (* Harvey P. Dale, Jul 28 2017 *)
  • PARI
    A034887(n)=n*log(2)\log(10)+1 \\ or: { a(n)=#digits(1<M. F. Hasler, Oct 08 2016
    
  • Python
    def a(n): return len(str(1 << n))
    print([a(n) for n in range(73)]) # Michael S. Branicky, Dec 23 2022

Formula

a(n) = floor(n*log_10(2)) + 1. E.g., a(10)=4 because 2^10 = 1024 and floor(10*log_10(2)) + 1 = 3 + 1 = 4. - Jaap Spies, Dec 11 2003
a(n) = A055642(2^n) = A055642(A000079(n)).

A000461 Concatenate n n times.

Original entry on oeis.org

1, 22, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999, 10101010101010101010, 1111111111111111111111, 121212121212121212121212, 13131313131313131313131313, 1414141414141414141414141414, 151515151515151515151515151515, 16161616161616161616161616161616
Offset: 1

Views

Author

John Radu (Suttones(AT)aol.com)

Keywords

Examples

			From _Bruno Berselli_, Oct 05 2018: (Start)
.         1 * 9 = 09
.        22 * 9 = 198
.       333 * 9 = 2997
.      4444 * 9 = 39996
.     55555 * 9 = 499995
.    666666 * 9 = 5999994
.   7777777 * 9 = 69999993
.  88888888 * 9 = 799999992
. 999999999 * 9 = 8999999991
(End)
		

References

  • F. Smarandache, "Properties of the numbers", Univ. of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.

Crossrefs

Programs

  • Haskell
    a000461 n = (read $ concat $ replicate n $ show n) :: Integer
    -- Reinhard Zumkeller, Apr 26 2011
    
  • Maple
    a:= n-> parse(cat(n$n)):
    seq(a(n), n=1..20);  # Alois P. Heinz, Apr 26 2011
  • Mathematica
    Table[Sum[(n)*10^(i*(Floor[Log[10, n]] + 1)), {i, 0, n - 1}], {n, 1, 30}] (* José de Jesús Camacho Medina, Dec 10 2014 *)
    Table[FromDigits[Flatten[IntegerDigits/@Table[n,{n}]]],{n,15}] (* Harvey P. Dale, Mar 01 2015 *)
    Table[FromDigits[PadRight[{},n IntegerLength[n],IntegerDigits[n]]],{n,15}] (* Harvey P. Dale, Jun 19 2016 *)
  • PARI
    a(n) = eval(concat(apply(x->Str(x), vector(n, k, n)))); \\ Michel Marcus, Oct 05 2018; Feb 12 2023
    
  • Python
    def a(n): return int(str(n)*n)
    print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Jan 22 2021

Formula

a(n) = n*(10^(n*L(n))-1)/(10^L(n)-1) where L(n) = A004216(n)+1 = floor(log_10(10n)). - Henry Bottomley, Jun 01 2000
A055642(a(n)) = n * A055642(n). - Reinhard Zumkeller, Apr 26 2011
a(n) = Sum_{i=0..n-1} (n*10^(i*(floor(log(10, n)) + 1))). - José de Jesús Camacho Medina, Dec 10 2014

A050622 Numbers m that are divisible by 2^k, where k is the digit length of m.

Original entry on oeis.org

2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Comments

The number of terms of length k is equal to (9*5^(k-1) - 1)/2. - Bernard Schott, Apr 06 2020

Crossrefs

Programs

  • Maple
    seq(seq(j*2^k, j=(5^(k-1)+1)/2 .. 5^k-1),k=1..3); # Robert Israel, Apr 05 2020
  • Mathematica
    Select[Range[360], IntegerQ[#/2^IntegerLength[#]] &] (* Jayanta Basu, May 25 2013 *)
  • PARI
    isok(n) = n % (2^#Str(n)) == 0; \\ Michel Marcus, Sep 17 2015

A230093 Number of values of k such that k + (sum of digits of k) is n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Oct 10 2013

Keywords

Comments

a(n) is the number of times n occurs in A062028.
For n>=1, a(10^n) = a(9*n-1). - Max Alekseyev, Feb 23 2021

Crossrefs

Cf. A006064, A007953 (sum of digits), A062028 (n + sum of its digits), A004207, A228085, A003052, A176995, A225793, A230094, A055642.
Cf. A107740 (this applied to primes).

Programs

  • Haskell
    a230093 n = length $ filter ((== n) . a062028) [n - 9 * a055642 n .. n]  -- Reinhard Zumkeller, Oct 11 2013
    
  • Maple
    # Maple code for A062028, A230093, A003052, A225793, A230094.
    with(LinearAlgebra):
    read transforms; # to get digsum
    M := 1000; A062028 := Array(0..M); A230093 := Array(0..M);
    for n from 0 to M do
       m := n+digsum(n);
       A062028[n] := m;
       if m <= M then A230093[m] := A230093[m]+1; fi;
    od:
    t1:=[seq(A062028[i],i=0..M)]; # A062028 as list (but incorrect offset 1)
    t2:=[seq(A230093[i],i=0..M)]; # A230093 as list, but then a(0) has index 1
    # A003052 := COMPl(t1); # COMPl has issues, may be incorrect for M <> 1000
    ctmax:=4;
    for h from 0 to ctmax do ct[h] := []; od:
    for i from 1 to M do
       h := lis2[i];
       if h <= ctmax then ct[h] := [op(ct[h]),i]; fi;
    od:
    A225793 := ct[1]; A230094 := ct[2]; # A003052 := ct[0]; # see there for better code
  • Mathematica
    Module[{nn=110,a,b,c,d},a=Tally[Table[x+Total[IntegerDigits[x]],{x,0,nn}]];b=a[[All,1]];c={#,0}&/@Complement[Range[nn],b];d=Sort[Join[a,c]];d[[All, 2]]] (* Harvey P. Dale, Jun 12 2019 *)
  • PARI
    apply( A230093(n)=sum(i=n>0,min(9*logint(n+!n,10)+8,n\2),sumdigits(n-i)==i), [1..150]) \\ M. F. Hasler, Nov 08 2018

Extensions

Edited by M. F. Hasler, Nov 08 2018

A052018 Numbers k with the property that the sum of the digits of k is a substring of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 200, 300, 400, 500, 600, 700, 800, 900, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 1000, 1009, 1018, 1027, 1036, 1045, 1054, 1063
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (isInfixOf)
    a052018 n = a052018_list !! (n-1)
    a052018_list = filter f [0..] where
       f x = show (a007953 x) `isInfixOf` show x
    -- Reinhard Zumkeller, Jun 18 2013
    
  • Mathematica
    sdssQ[n_]:=Module[{idn=IntegerDigits[n],s,len},s=Total[idn];len= IntegerLength[ s]; MemberQ[Partition[idn,len,1],IntegerDigits[s]]]; Join[{0},Select[Range[1100],sdssQ]] (* Harvey P. Dale, Jan 02 2013 *)
  • Python
    loop = (str(n) for n in range(399))
    print([int(n) for n in loop if str(sum(int(k) for k in n)) in n]) # Jonathan Frech, Jun 05 2017

A176995 Numbers that can be written as (m + sum of digits of m) for some m.

Original entry on oeis.org

2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 21 2011

Keywords

Comments

The asymptotic density of this sequence is approximately 0.9022222 (Guaraldo, 1978). - Amiram Eldar, Nov 22 2020

Examples

			a(5) = 10 = 5 + (5);
a(87) = 100 = 86 + (8+6);
a(898) = 1000 = 977 + (9+7+7);
a(9017) = 10000 = 9968 + (9+9+6+8).
		

References

  • V. S. Joshi, A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar, Math. Student, Vol. 39 (1971), pp. 327-328. MR0330032 (48 #8371).

Crossrefs

Complement of A003052, range of A062028.

Programs

  • Haskell
    a176995 n = a176995_list !! (n-1)
    a176995_list = filter ((> 0) . a230093) [1..]
    -- Reinhard Zumkeller, Oct 11 2013, Aug 21 2011
    
  • Mathematica
    Select[Union[Table[n + Total[IntegerDigits[n]], {n, 77}]], # <= 77 &] (* Jayanta Basu, Jul 27 2013 *)
  • PARI
    is_A003052(n)={for(i=1, min(n\2, 9*#digits(n)), sumdigits(n-i)==i && return); n} \\ from A003052
    isok(n) = ! is_A003052(n) \\ Michel Marcus, Aug 20 2020

Formula

A230093(a(n)) > 0. - Reinhard Zumkeller, Oct 11 2013
Previous Showing 51-60 of 508 results. Next