cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A098832 Square array read by antidiagonals: even-numbered rows of the table are of the form n*(n+m) and odd-numbered rows are of the form n*(n+m)/2.

Original entry on oeis.org

1, 3, 3, 6, 8, 2, 10, 15, 5, 5, 15, 24, 9, 12, 3, 21, 35, 14, 21, 7, 7, 28, 48, 20, 32, 12, 16, 4, 36, 63, 27, 45, 18, 27, 9, 9, 45, 80, 35, 60, 25, 40, 15, 20, 5, 55, 99, 44, 77, 33, 55, 22, 33, 11, 11, 66, 120, 54, 96, 42, 72, 30, 48, 18, 24, 6, 78, 143, 65, 117, 52, 91, 39, 65, 26, 39, 13, 13
Offset: 1

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 02 2004

Keywords

Comments

The rows of this table and that in A098737 are related. Given a function f = n/( 1 + (1+n) mod(2) ), row n of A098737 can be derived from row n of T by multiplying the latter by f(n); row n of T can be derived from row n of A098737 by dividing the latter by f(n).

Examples

			Array begins as:
  1,  3,  6, 10, 15, 21,  28,  36,  45 ... A000217;
  3,  8, 15, 24, 35, 48,  63,  80,  99 ... A005563;
  2,  5,  9, 14, 20, 27,  35,  44,  54 ... A000096;
  5, 12, 21, 32, 45, 60,  77,  96, 117 ... A028347;
  3,  7, 12, 18, 25, 33,  42,  52,  63 ... A027379;
  7, 16, 27, 40, 55, 72,  91, 112, 135 ... A028560;
  4,  9, 15, 22, 30, 39,  49,  60,  72 ... A055999;
  9, 20, 33, 48, 65, 84, 105, 128, 153 ... A028566;
  5, 11, 18, 26, 35, 45,  56,  68,  81 ... A056000;
Antidiagonals begin as:
   1;
   3,  3;
   6,  8,  2;
  10, 15,  5,  5;
  15, 24,  9, 12,  3;
  21, 35, 14, 21,  7,  7;
  28, 48, 20, 32, 12, 16,  4;
  36, 63, 27, 45, 18, 27,  9,  9;
  45, 80, 35, 60, 25, 40, 15, 20,  5;
  55, 99, 44, 77, 33, 55, 22, 33, 11, 11;
		

Crossrefs

Row m of array: A000217 (m=1), A005563 (m=2), A000096 (m=3), A028347 (m=4), A027379 (m=5), A028560 (m=6), A055999 (m=7), A028566 (m=8), A056000 (m=9), A098603 (m=10), A056115 (m=11), A098847 (m=12), A056119 (m=13), A098848 (m=14), A056121 (m=15), A098849 (m=16), A056126 (m=17), A098850 (m=18), A051942 (m=19).
Column m of array: A026741 (m=1), A022998 (m=2), A165351 (m=3).

Programs

  • Magma
    A098832:= func< n,k | (1/4)*(3+(-1)^k)*(n+1)*(n-k+1) >;
    [A098832(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 31 2022
    
  • Mathematica
    A098832[n_, k_]:= (1/4)*(3+(-1)^k)*(n+1)*(n-k+1);
    Table[A098832[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jul 31 2022 *)
  • SageMath
    def A098832(n,k): return (1/4)*(3+(-1)^k)*(n+1)*(n-k+1)
    flatten([[A098832(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Jul 31 2022

Formula

Item m of row n of T is given (in infix form) by: n T m = n * (n + m) / (1 + m (mod 2)). E.g. Item 4 of row 3 of T: 3 T 4 = 14.
From G. C. Greubel, Jul 31 2022: (Start)
A(n, k) = (1/4)*(3 + (-1)^n)*k*(k+n) (array).
T(n, k) = (1/4)*(3 + (-1)^k)*(n+1)*(n-k+1) (antidiagonal triangle).
Sum_{k=1..n} T(n, k) = (1/8)*(n+1)*( (3*n-1)*(n+1) + (1+(-1)^n)/2 ).
T(2*n-1, n) = A181900(n).
T(2*n+1, n) = 2*A168509(n+1). (End)

Extensions

Missing terms added by G. C. Greubel, Jul 31 2022

A219502 T(n,k)=Number of nXk arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 nXk array.

Original entry on oeis.org

2, 2, 2, 3, 3, 3, 4, 5, 5, 4, 5, 7, 11, 7, 5, 6, 9, 18, 18, 9, 6, 7, 11, 26, 35, 26, 11, 7, 8, 13, 35, 58, 58, 35, 13, 8, 9, 15, 45, 88, 107, 88, 45, 15, 9, 10, 17, 56, 126, 179, 179, 126, 56, 17, 10, 11, 19, 68, 173, 281, 325, 281, 173, 68, 19, 11, 12, 21, 81, 230, 421, 550, 550, 421
Offset: 1

Views

Author

R. H. Hardin Nov 20 2012

Keywords

Comments

Table starts
..2..2...3...4....5....6.....7.....8.....9....10....11....12....13....14....15
..2..3...5...7....9...11....13....15....17....19....21....23....25....27....29
..3..5..11..18...26...35....45....56....68....81....95...110...126...143...161
..4..7..18..35...58...88...126...173...230...298...378...471...578...700...838
..5..9..26..58..107..179...281...421...608...852..1164..1556..2041..2633..3347
..6.11..35..88..179..325...550...885..1369..2050..2986..4246..5911..8075.10846
..7.13..45.126..281..550...995..1703..2793..4424..6804.10200.14949.21470.30277
..8.15..56.173..421..885..1703..3083..5328..8869.14306.22458.34423.51649.76017
..9.17..68.230..608.1369..2793..5328..9663.16831.28346.46382.74003
.10.19..81.298..852.2050..4424..8869.16831.30581.53601.91116
.11.21..95.378.1164.2986..6804.14306.28346.53601.97541
.12.23.110.471.1556.4246.10200.22458.46382.91116

Examples

			Some solutions for n=3 k=4
..0..0..0..0....0..0..0..0....0..0..0..0....1..0..0..0....1..0..0..0
..0..0..0..0....0..0..0..0....1..0..0..0....1..1..0..0....1..0..0..0
..1..0..0..0....1..1..1..0....1..1..1..0....1..1..1..0....1..0..0..0
		

Crossrefs

Column 1 is A000027
Column 2 is A004273
Column 3 is A056000(n-1) for n>1

Formula

Empirical for column k:
k=1: a(n) = n for n>1
k=2: a(n) = 2*n - 1 for n>1
k=3: a(n) = (1/2)*n^2 + (7/2)*n - 4 for n>1
k=4: a(n) = (1/6)*n^3 + n^2 + (23/6)*n - 7 for n>2
k=5: a(n) = (1/24)*n^4 + (1/4)*n^3 + (35/24)*n^2 + (21/4)*n - 13 for n>2
k=6: a(n) = (1/120)*n^5 + (1/24)*n^4 + (13/24)*n^3 + (59/24)*n^2 + (59/20)*n - 17 for n>3
k=7: a(n) = (1/720)*n^6 + (1/240)*n^5 + (23/144)*n^4 + (13/16)*n^3 + (331/180)*n^2 + (311/60)*n - 27 for n>3

A096941 Fourth column of (1,5)-Pascal triangle A096940.

Original entry on oeis.org

5, 16, 34, 60, 95, 140, 196, 264, 345, 440, 550, 676, 819, 980, 1160, 1360, 1581, 1824, 2090, 2380, 2695, 3036, 3404, 3800, 4225, 4680, 5166, 5684, 6235, 6820, 7440, 8096, 8789, 9520, 10290, 11100, 11951, 12844, 13780, 14760, 15785, 16856, 17974, 19140
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

If Y is a 5-subset of an n-set X then, for n>=7, a(n-7) is the number of 3-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007

Crossrefs

Third column: A056000; fifth column: A096942.

Programs

Formula

a(n)= (n+15)*(n+2)*(n+1)/6 = 5*b(n)-4*b(n-1), with b(n):=A000292(n)=binomial(n+3, 3).
G.f.: (5-4*x)/(1-x)^4.

A337940 Triangle read by rows: T(n, k) = T(n+2) - T(n-k), with the triangular numbers T = A000217, for n >= 1, k = 1, 2, ..., n.

Original entry on oeis.org

6, 9, 10, 12, 14, 15, 15, 18, 20, 21, 18, 22, 25, 27, 28, 21, 26, 30, 33, 35, 36, 24, 30, 35, 39, 42, 44, 45, 27, 34, 40, 45, 49, 52, 54, 55, 30, 38, 45, 51, 56, 60, 63, 65, 66, 33, 42, 50, 57, 63, 68, 72, 75, 77, 78, 36, 46, 55, 63, 70, 76, 81, 85, 88, 90, 91
Offset: 1

Views

Author

Wolfdieter Lang, Nov 23 2020

Keywords

Comments

This number triangle results from the array A(n, m) = T(n+m+1) - T(n-1), with T = A000217, for n, m >= 1. For this array see the example by Bob Selcoe, in A111774 (but with rows continued). The present triangle is obtained by reading the array by upwards antidiagonals: T(n, k) = A(n+1-k, k). See also the Jul 09 2019 comment by Ralf Steiner with the formula c_k(n) (rows k >= 1, columns n >= 3), rewritten for A(n, m) = (m+2)*(2*n+m+1)/2, leading to T(n, k) = (k+2)*(2*n-k+3)/2.
Therefore this triangle is related to the problem of giving the numbers which are sums of at least three consecutive positive integers given as sequence A111774. It allows us to find the multiplicities for the numbers of A111774. They are given in A338428(n).
To obtain the multiplicity for number N (>= 6) from A111774 one has to consider only the triangle rows n = 1, 2, ..., floor((N-3)/3).
The row reversed triangle, considered by Bob Selcoe in A111774, is T(n, n-k+1) = T(n+2) - T(k-1), for n >= 1, and k=1, 2, ..., n.
This triangle contains no odd prime numbers and no exact powers 2^m, for m >= 0. This can be seen by considering the diagonal sequences D(d, k), for d >= 1, k >= 1 or the row sequences of the array A(n, m), for n >= 1 and m >= 1. The result is A(r+1, s-2) = s*(s + 2*r + 1)/2, for r >= 0 and s >= 3 (from the g.f. of the diagonals of T given below). This is also given in the Jul 09 2019 comment by Ralf Steiner in A111774. Therefore A(r+1, s-2) is a product of two numbers >= 2, hence not a prime. And in both cases (i) s/2 integer or (ii) (s + 2*r + 1)/2 integer not both numbers can be powers of 2 by simple parity arguments.
The previous comment means that each T(n, k) has at least one odd prime as a proper divisor.
A number N appears in this triangle, or in A111774, if and only if floor(N/2) - delta(N) >= 1, where delta(N) = A055034(N). For the sequence b(n) := floor(n/2) - delta(n), for n >= 2, see A219839(n), b(1) = -1. See a W. Lang comment in A111774 for the proof.

Examples

			The triangle T(n, k) begins:
n \ k  1  2  3  4  5   6   7   8   9  10  11  12  13  14  15 ...
1:     6
2:     9 10
3:    12 14 15
4:    15 18 20 21
5:    18 22 25 27 28
6:    21 26 30 33 35  36
7:    24 30 35 39 42  44  45
8:    27 34 40 45 49  52  54  55
9:    30 38 45 51 56  60  63  65  66
10:   33 42 50 57 63  68  72  75  77  78
11:   36 46 55 63 70  76  81  85  88  90  91
12:   39 50 60 69 77  84  90  95  99 102 104 105
13:   42 54 65 75 84  92  99 105 110 114 117 119 120
14:   45 58 70 81 91 100 108 115 121 126 130 133 135 136
15:   48 62 75 87 98 108 117 125 132 138 143 147 150 152 153
...
N = 15 appears precisely twice from the sums 4+5+6 = A(4, 1) = T(4, 1), and (1+2+3)+4+5 = A(1, 3) = T(3, 3), i.e., with a sum of 3 and 5 consecutive positive integers.
N = 42 appears three times from the sums 13+14+15 = A(13, 1) = T(13, 1), 9+10+11 +12 = A(9, 2) = T(10, 2), 3+4+5+6+7+8+9 = A(3, 5) = T(7, 5); i.e., 42 can be written as a sum of 3, 4 and 7 consecutive positive integers.
		

Crossrefs

Cf. A055034, A111774, A338428 (multiplicities), A219839.
For columns k = 1, 2, ..., 10 see A008585, A016825, A008587, A016945, A008589, A017113, A008591, A017329, A008593, A017593.
For diagonals d = 1, 2, ..., 10 see A000217, A000096, A055998, A055999, A056000, A056115, A056119 , A056121, A056126, A051942.

Programs

  • Mathematica
    Flatten[Table[((n+2)*(n+3)-(n-k)*(n-k+1))/2,{n,11},{k,n}]] (* Stefano Spezia, Nov 24 2020 *)

Formula

T(n, k) = ((n+2)*(n+3) - (n-k)*(n-k+1))/2, for n >= 1 and k = 1, 2, ..., n (see the name).
T(n, k) = (k+2)*(2*n-k+3)/2 (factorized).
G.f. columns k = 2*j+1, for j >= 0: Go(j, x) = x^(2*j+1)*(2*j+3)*(j+2 - (j+1)*x)/(1-x)^2,
G.f. columns k = 2*j, for j >= 1: Ge(j, x) = x^(2*j)*(j+1)*(2*j+3 - (2*j+1)*x)/(1-x)^2.
G.f. row polynomials: G(z,x) = z*x*(1 + z*x)^3*{3*(2-z) - (8-3*z)*(z*x) + (3-z)*(z*x)^2}/((1 - z)^2*(1 - (z*x)^2)^3).
G.f. diagonals d >= 1: GD(d, x) = ((d+1)*3 - (5*d+3)*x + (2*d+1)*x^2)/(1-x)^3.
G.f. of GD(d, x): GGD(z,x) = (6-8*x+3*x^2 - (3-3*x+x^2)*z)/((1-x)^3*(1-z)^2).

A212427 a(n) = 17*n + A000217(n-1).

Original entry on oeis.org

0, 17, 35, 54, 74, 95, 117, 140, 164, 189, 215, 242, 270, 299, 329, 360, 392, 425, 459, 494, 530, 567, 605, 644, 684, 725, 767, 810, 854, 899, 945, 992, 1040, 1089, 1139, 1190, 1242, 1295, 1349, 1404, 1460, 1517, 1575, 1634, 1694, 1755, 1817, 1880, 1944, 2009
Offset: 0

Views

Author

Jesse Han, May 16 2012

Keywords

Comments

Generalization: T(n,i) = A000217(i-1+n) - A000217(i-1) = i*n + A000217(n-1); in this case is i=17. See also the comment in A212428.

Crossrefs

For n > 22, T(n,17) matches A074170 but with opposite sign.

Programs

  • Magma
    [n*(n+33)/2: n in [0..49]]; // Bruno Berselli, Jun 22 2012
    
  • Mathematica
    Table[-17 (17 - 1)/2 + (17 + n) (16 + n)/2, {n, 0, 100}]
  • PARI
    a(n)=n*(n+33)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (16+n)*(17+n)/2 - 16*17/2 = 17*n + (n-1)*n/2 = n*(n+33)/2.
G.f.: x*(17-16*x)/(1-x)^3. - Bruno Berselli, Jun 22 2012
a(n) = 17*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
From Amiram Eldar, Jan 11 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(33)/(33*A002805(33)) = 53676090078349/216605329340400.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/33 - 14606816124167/340379803249200. (End)
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(34 + x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A212428 a(n) = 18*n + A000217(n-1).

Original entry on oeis.org

0, 18, 37, 57, 78, 100, 123, 147, 172, 198, 225, 253, 282, 312, 343, 375, 408, 442, 477, 513, 550, 588, 627, 667, 708, 750, 793, 837, 882, 928, 975, 1023, 1072, 1122, 1173, 1225, 1278, 1332, 1387, 1443, 1500, 1558, 1617, 1677, 1738, 1800, 1863, 1927, 1992, 2058
Offset: 0

Views

Author

Jesse Han, May 16 2012

Keywords

Comments

Generalization: T(n,i) = A000217(i-1+n) - A000217(i-1) = i*n + A000217(n-1) (corrected by Zak Seidov, Jun 21 2012); in this case is i=18.
For i = 11..16, Milan Janjic observed that if we define f(n,b,i) = Sum_{k=0..n-b} binomial(n,k)*Stirling1(n-k,b)*Product_{j=0..k-1} (-i - j), then T(n-1,i) = -f(n,n-1,i) for n >= 1.

Crossrefs

Programs

  • Magma
    [n*(n+35)/2: n in [0..48]]; // Bruno Berselli, Jun 21 2012
    
  • Mathematica
    Table[-18 (18 - 1)/2 + (18 + n) (17 + n)/2, {n, 0, 100}]
    LinearRecurrence[{3,-3,1},{0,18,37},60] (* Harvey P. Dale, Jun 09 2024 *)
  • PARI
    a(n)=n*(n+35)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (17+n)*(18+n)/2 - 17*18/2 = 18*n + (n-1)*n/2 = n*(n+35)/2.
G.f.: x*(18-17*x)/(1-x)^3. - Bruno Berselli, Jun 21 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 10 2012
a(n) = 18*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
From Amiram Eldar, Jan 11 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(35)/(35*A002805(35)) = 54437269998109/229732925058000.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/35 - 102126365345729/2527062175638000. (End)
E.g.f.: exp(x)*x*(36 + x)/2. - Elmo R. Oliveira, Dec 12 2024

A174183 a(n) is the period k such that binomial(m, n) (mod 10) = binomial(m + k, n) (mod 10).

Original entry on oeis.org

1, 10, 20, 60, 240, 1200, 7200, 50400, 403200, 3628800, 36288000, 399168000, 4790016000, 62270208000, 871782912000, 13076743680000, 209227898880000, 3556874280960000, 64023737057280000, 1216451004088320000
Offset: 0

Views

Author

Michel Lagneau, Mar 11 2010

Keywords

Comments

a(n) is the period (mod 10) of the numbers in each column n of Pascal's triangle.

Examples

			x(0)= 0.C(1,0)C(2,0)C(3,0) ... = 0.11111111111... and p(0)=1 ;
x(1)= 0.C(1,1)C(2,1)C(3,1) ... = 0.12345678901234... and p(1) = 10 ;
x(2)= 0.C(2,2)C(3,2)C(4,2) ... = 0.13605186556815063100 13605186556815063100... and p(2)=20.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Programs

  • Mathematica
    Join[{1},Array[10#!&,20]] (* Harvey P. Dale, Feb 18 2018 *)
  • Python
    from math import factorial
    def A174183(n): return 10*factorial(n) if n else 1 # Chai Wah Wu, Aug 07 2025

Formula

a(0)=1, and a(n) = 10 * n! for n >= 1.

Extensions

Additional comments, and errors in examples corrected by Michel Lagneau, May 07 2010

A270048 a(1) = 0; a(n+1) = a(n) + n * the number of digits of a(n).

Original entry on oeis.org

0, 1, 3, 6, 10, 20, 32, 46, 62, 80, 100, 133, 169, 208, 250, 295, 343, 394, 448, 505, 565, 628, 694, 763, 835, 910, 988, 1069, 1181, 1297, 1417, 1541, 1669, 1801, 1937, 2077, 2221, 2369, 2521, 2677, 2837, 3001, 3169, 3341, 3517, 3697, 3881, 4069, 4261, 4457, 4657, 4861, 5069, 5281, 5497, 5717, 5941
Offset: 1

Views

Author

Francesco Di Matteo, Mar 09 2016

Keywords

Comments

In this sequence each a(n) term is the sum of k-terms, where k is the number of digits of a(n-1).
This is easy to verify by observing the following table:
+----+---------+---------+---------+--+-----+
| n | A000217 | A056000 | A101859 |..| a(n)|
+----+---------+---------+---------+--+-----+
| 1 | 0 | . | . | .| 0 |
| 2 | 1 | . | . | .| 1 |
| 3 | 3 | . | . | .| 3 |
| 4 | 6 | . | . | .| 6 |
| 5 | 10 | 0 | . | .| 10 |
| 6 | 15 | 5 | . | .| 20 |
| 7 | 21 | 11 | . | .| 32 |
| 8 | 28 | 18 | . | .| 46 |
| 9 | 36 | 26 | . | .| 62 |
| 10 | 45 | 35 | . | .| 80 |
| 11 | 55 | 45 | 0 | .| 100 |
| 12 | 66 | 56 | 11 | .| 133 |
| 13 | 78 | 68 | 23 | .| 169 |
| 14 | 91 | 81 | 36 | .| 208 |
| 15 | 105 | 95 | 50 | .| 250 |
| 16 | 120 | 110 | 65 | .| 295 |
| 17 | 136 | 126 | 81 | .| 343 |
.
As we can see each of those terms is a term of a different subsequence, that is generated with the same construction rule, that is: a(n) = n + a(n-1) + Z.
In fact:
A000217 --> a(n) = n + a(n-1) + 0;
A056000 --> a(n) = n + a(n-1) + 4;
A101859 --> a(n) = n + a(n-1) + 10.
And so on, where the Z value is the n value of this sequence when the number of digits of a(n) is greater than that of a(n-1), or Z = Sum_{j=1..i} k(j) where k(j) is A270270(j).

Examples

			a(4) = 3 + 3*1 = 6;
a(5) = 6 + 4*1 = 10;
a(6) = 10 + 5*2 = 20.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := a[n] = # + (n - 1) If[# == 0, 1, IntegerLength@ #] &@ a[n - 1]; Table[a@ n, {n, 57}] (* Michael De Vlieger, Mar 09 2016 *)
  • PARI
    a(n) = if (n==1, 0, prec = a(n-1); prec + (n-1)*#Str(prec)); \\ Michel Marcus, Apr 03 2016
  • Python
    b = 0
    print(b, end=',')
    for g in range(1, 100):
       b += g*len(str(b))
       print(b, end=',')
    

A356754 Triangle read by rows: T(n,k) = ((n-1)*(n+2))/2 + 2*k.

Original entry on oeis.org

2, 4, 6, 7, 9, 11, 11, 13, 15, 17, 16, 18, 20, 22, 24, 22, 24, 26, 28, 30, 32, 29, 31, 33, 35, 37, 39, 41, 37, 39, 41, 43, 45, 47, 49, 51, 46, 48, 50, 52, 54, 56, 58, 60, 62, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87
Offset: 1

Views

Author

Torlach Rush, Aug 25 2022

Keywords

Comments

The first column of the triangle is the Lazy Caterer's sequence A000124.
Each subsequent column starts with A000124(n) + (2 * (n-1)).
The first downward diagonal is A046691(n).
Columns and downward diagonals of the triangle identify many sequences (possibly shifted) in the database. Examples can be found in crossrefs below.
The sum of the n-th upward diagonal of the triangle is A356288(n).

Examples

			Triangle T(n,k) begins:
  n\k   1   2   3   4   5   6   7   8   9  10  11  ...
   1:   2
   2:   4   6
   3:   7   9  11
   4:  11  13  15  17
   5:  16  18  20  22  24
   6:  22  24  26  28  30  32
   7:  29  31  33  35  37  39  41
   8:  37  39  41  43  45  47  49  51
   9:  46  48  50  52  54  56  58  60  62
  10:  56  58  60  62  64  66  68  70  72  74
  11:  67  69  71  73  75  77  79  81  83  85  87
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[((n-1)(n+2))/2+2k,{n,20},{k,n}]//Flatten (* Harvey P. Dale, May 26 2023 *)
  • Python
    def T(n, k): return ((n-1) * (n+2))//2 + 2*k
    for n in range(1, 12):
        for k in range(1,(n+1)): print(T(n,k), end = ', ')
    
  • Python
    # Indexed as a linear sequence.
    def a000124(n): return n*(n+1)//2 + 1
    def a(n):
        l = m = 0
        for k in range(1,n):
            lc = a000124(k - 1)
            if n >= lc:
                l = lc
                m = k
            else: break
        return n + m + (n - l)

Formula

T(n,k) = ((n-1) * (n+2))/2 + 2*k.
T(n,k+1) = T(n,k) + 2, k < n.
Previous Showing 21-29 of 29 results.