A086971 Number of semiprime divisors of n.
Keywords
References
- G. H. Hardy and E. M. Wright, Section 17.10 in An Introduction to the Theory of Numbers, 5th ed., Oxford, England: Clarendon Press, 1979.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- E. A. Bender and J. R. Goldman, On the Applications of Mobius Inversion in Combinatorial Analysis, Amer. Math. Monthly 82, (1975), 789-803.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric Weisstein's World of Mathematics, Semiprime.
- Eric Weisstein's World of Mathematics, Divisor Function.
- Eric Weisstein's World of Mathematics, Moebius Transform.
Crossrefs
Programs
-
Haskell
a086971 = sum . map a064911 . a027750_row -- Reinhard Zumkeller, Dec 14 2012
-
Maple
a:= proc(n) local l, m; l:=ifactors(n)[2]; m:=nops(l); m*(m-1)/2 +add(`if`(i[2]>1, 1, 0), i=l) end: seq(a(n), n=1..120); # Alois P. Heinz, Jul 18 2013
-
Mathematica
semiPrimeQ[n_] := PrimeOmega@ n == 2; f[n_] := Length@ Select[Divisors@ n, semiPrimeQ@# &]; Array[f, 105] (* Zak Seidov, Mar 31 2011 and modified by Robert G. Wilson v, Dec 08 2012 *) a[n_] := Count[e = FactorInteger[n][[;; , 2]], ?(# > 1 &)] + (o = Length[e])*(o - 1)/2; Array[a, 100] (* _Amiram Eldar, Jun 30 2022 *)
-
PARI
/* The following definitions of a(n) are equivalent. */ a(n) = sumdiv(n,d,bigomega(d)==2) a(n) = f=factor(n); j=matsize(f)[1]; sum(m=1,j,f[m,2]>=2) + binomial(j,2) a(n) = f=factor(n); j=omega(n); sum(m=1,j,f[m,2]>=2) + binomial(j,2) a(n) = omega(n/core(n)) + binomial(omega(n),2) /* Rick L. Shepherd, Mar 06 2006 */
Comments