cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 78 results. Next

A081386 Number of unitary prime divisors of central binomial coefficient, C(2n,n) = A000984(n), i.e., number of those prime factors in C(2n,n), whose exponent equals one.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 3, 4, 4, 4, 5, 5, 4, 3, 5, 7, 6, 7, 7, 8, 9, 9, 6, 7, 7, 7, 8, 11, 12, 11, 11, 11, 12, 12, 12, 13, 13, 13, 11, 13, 12, 14, 13, 13, 15, 14, 14, 14, 15, 16, 16, 16, 17, 19, 18, 17, 18, 19, 18, 19, 18, 18, 18, 20, 18, 21, 22, 20, 20, 20, 20, 20, 20, 19, 21, 21, 24, 23
Offset: 1

Views

Author

Labos Elemer, Mar 27 2003

Keywords

Examples

			n=10: C(20,10) = 184756 = 2*2*11*13*17*19; unitary-p-divisors = {11,13,17,19}, so a(10)=4.
		

Crossrefs

Programs

  • Mathematica
    Table[Function[m, Count[Divisors@ m, k_ /; And[PrimeQ@ k, GCD[k, m/k] == 1]]]@ Binomial[2 n, n], {n, 50}] (* Michael De Vlieger, Dec 17 2016 *)
  • PARI
    a(n) = my(f=factor(binomial(2*n, n))); sum(k=1, #f~, f[k,2] == 1); \\ Michel Marcus, Dec 18 2016

Formula

a(n) = A056169(A000984(n)).

A290095 a(n) = A275725(A060126(n)); prime factorization encodings of cycle-polynomials computed for finite permutations listed in reversed colexicographic ordering.

Original entry on oeis.org

2, 4, 18, 8, 8, 12, 150, 100, 54, 16, 16, 24, 54, 16, 90, 40, 36, 16, 16, 24, 40, 60, 16, 36, 1470, 980, 882, 392, 392, 588, 750, 500, 162, 32, 32, 48, 162, 32, 270, 80, 108, 32, 32, 48, 80, 120, 32, 72, 750, 500, 162, 32, 32, 48, 1050, 700, 378, 112, 112, 168, 450, 200, 162, 32, 32, 72, 200, 300, 32, 48, 108, 32, 162, 32, 270, 80, 108, 32, 378, 112, 630, 280
Offset: 0

Views

Author

Antti Karttunen, Aug 17 2017

Keywords

Comments

In this context "cycle-polynomials" are single-variable polynomials where the coefficients (encoded with the exponents of prime factorization of n) are equal to the lengths of cycles in the permutation listed with index n in table A055089 (A195663). See the examples.

Examples

			Consider the first eight permutations (indices 0-7) listed in A055089:
  1 [Only the first 1-cycle explicitly listed thus a(0) = 2^1 = 2]
  2,1 [One transposition (2-cycle) in beginning, thus a(1) = 2^2 = 4]
  1,3,2 [One fixed element in beginning, then transposition, thus a(2) = 2^1 * 3^2 = 18]
  3,1,2 [One 3-cycle, thus a(3) = 2^3 = 8]
  2,3,1 [One 3-cycle, thus a(4) = 2^3 = 8]
  3,2,1 [One transposition jumping over a fixed element, a(5) = 2^2 * 3^1 = 12]
  1,2,4,3 [Two 1-cycles, then a 2-cycle, thus a(6) = 2^1 * 3^1 * 5^2 = 150].
  2,1,4,3 [Two 2-cycles, not crossed, thus a(7) = 2^2 * 5^2 = 100].
		

Crossrefs

Formula

a(n) = A275725(A060126(n)).
Other identities:
A046523(a(n)) = A290096(n).
A056170(a(n)) = A055090(n).
A046660(a(n)) = A055091(n).
A072411(a(n)) = A055092(n).
A275812(a(n)) = A055093(n).

A318720 Numbers k such that there exists a strict relatively prime factorization of k in which no pair of factors is relatively prime.

Original entry on oeis.org

900, 1764, 1800, 2700, 3528, 3600, 4356, 4500, 4900, 5292, 5400, 6084, 6300, 7056, 7200, 8100, 8712, 8820, 9000, 9800, 9900, 10404, 10584, 10800, 11025, 11700, 12100, 12168, 12348, 12600, 12996, 13068, 13500, 14112, 14400, 14700, 15300, 15876, 16200, 16900
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

From Amiram Eldar, Nov 01 2020: (Start)
Also, numbers with more than two non-unitary prime divisors, i.e., numbers k such that A056170(k) > 2, or equivalently, numbers divisible by the squares of three distinct primes.
The complement of the union of A005117, A190641 and A338539.
The asymptotic density of this sequence is 1 - 6/Pi^2 - (6/Pi^2)*A154945 - (3/Pi^2)*(A154945^2 - A324833) = 0.0033907041... (End)

Examples

			900 is in the sequence because the factorization 900 = (6*10*15) is relatively prime (since the GCD of (6,10,15) is 1) but each of the pairs (6,10), (6,15), (10,15) has a common divisor > 1. Larger examples are:
1800 = (6*15*20) = (10*12*15).
9900 = (6*10*165) = (6*15*110) = (10*15*66).
5400 = (6*20*45) = (10*12*45) = (10*15*36) = (15*18*20).
60 is not in the sequence because all its possible factorizations (4 * 15, 3 * 4 * 5, etc.) contain at least one pair that is coprime, if not more than one prime.
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_] := If[n <= 1, {{}}, Join@@Table[(Prepend[#1, d] &)/@Select[strfacs[n/d], Min@@#1 > d &], {d, Rest[Divisors[n]]}]]; Select[Range[10000], Function[n, Select[strfacs[n], And[GCD@@# == 1, And@@(GCD[##] > 1 &)@@@Select[Tuples[#, 2], Less@@# &]] &] != {}]]
    Select[Range[20000], Count[FactorInteger[#][[;;,2]], ?(#1 > 1 &)] > 2 &] (* _Amiram Eldar, Nov 01 2020 *)

A338539 Numbers having exactly two non-unitary prime factors.

Original entry on oeis.org

36, 72, 100, 108, 144, 180, 196, 200, 216, 225, 252, 288, 300, 324, 360, 392, 396, 400, 432, 441, 450, 468, 484, 500, 504, 540, 576, 588, 600, 612, 648, 675, 676, 684, 700, 720, 756, 784, 792, 800, 828, 864, 882, 936, 968, 972, 980, 1000, 1008, 1044, 1080, 1089
Offset: 1

Views

Author

Amiram Eldar, Nov 01 2020

Keywords

Comments

Numbers k such that A056170(k) = A001221(A057521(k)) = 2.
Numbers divisible by the squares of exactly two distinct primes.
Subsequence of A036785 and first differs from it at n = 44.
The asymptotic density of this sequence is (3/Pi^2)*(eta_1^2 - eta_2) = 0.0532928864..., where eta_j = Sum_{p prime} 1/(p^2-1)^j (Pomerance and Schinzel, 2011).

Examples

			36 = 2^2 * 3^2 is a term since it has exactly 2 prime factors, 2 and 3, that are non-unitary.
		

Crossrefs

Subsequence of A013929 and A036785.
Cf. A154945 (eta_1), A324833 (eta_2).

Programs

  • Mathematica
    Select[Range[1000], Count[FactorInteger[#][[;;,2]], _?(#1 > 1 &)] == 2 &]

A367096 Irregular triangle read by rows where row n lists the semiprime divisors of n. Alternatively, row n lists the semiprime divisors of A002808(n).

Original entry on oeis.org

4, 6, 4, 9, 10, 4, 6, 14, 15, 4, 6, 9, 4, 10, 21, 22, 4, 6, 25, 26, 9, 4, 14, 6, 10, 15, 4, 33, 34, 35, 4, 6, 9, 38, 39, 4, 10, 6, 14, 21, 4, 22, 9, 15, 46, 4, 6, 49, 10, 25, 51, 4, 26, 6, 9, 55, 4, 14, 57, 58, 4, 6, 10, 15, 62, 9, 21, 4, 65, 6, 22, 33, 4, 34
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2023

Keywords

Comments

On the first interpretation, the first three rows are empty. On the second, the first row is (4).

Examples

			The semiprime divisors of 30 are {6,10,15}, so row 30 is (6,10,15). Without empty rows, this is row 19.
Triangle begins (empty rows indicated by dots):
   1: .
   2: .
   3: .
   4: 4
   5: .
   6: 6
   7: .
   8: 4
   9: 9
  10: 10
  11: .
  12: 4,6
Without empty rows:
   1: 4
   2: 6
   3: 4
   4: 9
   5: 10
   6: 4,6
   7: 14
   8: 15
   9: 4
  10: 6,9
  11: 4,10
  12: 21
		

Crossrefs

For all divisors we have A027750.
Square terms are counted by A056170.
Row sums are A076290.
Squarefree terms are counted by A079275.
Row lengths are A086971, firsts A220264.
A000005 counts divisors.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, complement A100959.

Programs

  • Mathematica
    Table[Select[Divisors[n],PrimeOmega[#]==2&],{n,100}]
  • PARI
    row(n) = select(x -> bigomega(x) == 2, divisors(n)); \\ Amiram Eldar, May 02 2025

A063956 Sum of unitary prime divisors of n.

Original entry on oeis.org

0, 2, 3, 0, 5, 5, 7, 0, 0, 7, 11, 3, 13, 9, 8, 0, 17, 2, 19, 5, 10, 13, 23, 3, 0, 15, 0, 7, 29, 10, 31, 0, 14, 19, 12, 0, 37, 21, 16, 5, 41, 12, 43, 11, 5, 25, 47, 3, 0, 2, 20, 13, 53, 2, 16, 7, 22, 31, 59, 8, 61, 33, 7, 0, 18, 16, 67, 17, 26, 14, 71, 0, 73, 39, 3, 19, 18, 18, 79, 5, 0
Offset: 1

Views

Author

Labos Elemer, Sep 04 2001

Keywords

Examples

			The prime divisors of 420 = 2^2 * 3 * 5 * 7. Among them, those that have exponent 1 (i.e., unitary prime divisors) are {3, 5, 7}, so a(420) = 3 + 5 + 7 = 15.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, And[PrimeQ@ #, GCD[#, n/#] == 1] &], {n, 81}] (* Michael De Vlieger, Feb 17 2019 *)
    f[p_, e_] := If[e == 1, p, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
    Join[{0},Table[Total[Select[FactorInteger[n],#[[2]]==1&][[;;,1]]],{n,2,100}]] (* Harvey P. Dale, Jan 26 2025 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[2, i]==1, a+=f[1, i])); write("b063956.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009

Formula

a(n*m) = a(n) + a(m) - a(gcd(n^2, m)) - a(gcd(n, m^2)) for all n and m > 0 (conjecture). - Velin Yanev, Feb 17 2019
From Amiram Eldar, Jul 24 2024: (Start)
a(n) = A008472(n) - A063958(n).
Additive with a(p^e) = p is e = 1, and 0 otherwise. (End)

Extensions

Example clarified by Harvey P. Dale, Jan 26 2025

A063958 Sum of the non-unitary prime divisors of n: sum of those prime divisors for which the exponent in the prime factorization exceeds 1.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 2, 0, 0, 0, 2, 0, 3, 0, 2, 0, 0, 0, 2, 5, 0, 3, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 2, 7, 5, 0, 2, 0, 3, 0, 2, 0, 0, 0, 2, 0, 0, 3, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 5, 2, 0, 0, 0, 2, 3, 0, 0, 2, 0, 0, 0, 2, 0, 3, 0, 2, 0, 0, 0, 2, 0, 7, 3, 7, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Labos Elemer, Sep 04 2001

Keywords

Crossrefs

Cf. A007947 (rad), A008472 (sopf).

Programs

  • Maple
    a:= proc(n) option remember; add(`if`(i[2]>1, i[1], 0), i=ifactors(n)[2]) end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 24 2018
  • Mathematica
    Array[Total@ Select[FactorInteger@ #, Last@ # > 1 &][[All, 1]] &, 105] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[2, i]>1, a+=f[1, i])); write("b063958.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009

Formula

G.f.: Sum_{k>=1} prime(k) * x^(prime(k)^2) / (1 - x^(prime(k)^2)). - Ilya Gutkovskiy, Apr 06 2020
a(n) = sopf(rad(n/rad(n))). - Wesley Ivan Hurt, Nov 21 2021
a(n) = Sum_{p^2|n} p. - Wesley Ivan Hurt, Feb 21 2022
From Amiram Eldar, Jul 24 2024: (Start)
a(n) = A008472(n) - A063956(n).
Additive with a(p^e) = p if e >= 2, and 0 otherwise. (End)

A081389 Number of non-unitary prime divisors of Catalan numbers, i.e., number of those prime factors whose exponent is greater than one.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 3, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 1, 2, 1, 3, 3, 3, 2, 4, 4, 4, 4, 2, 2, 3, 1, 1, 2, 2, 3, 2, 3, 3, 2, 4, 4, 2, 2, 2, 2, 3, 4, 5, 4, 3, 2, 2, 2, 2, 2, 2, 3
Offset: 1

Views

Author

Labos Elemer, Mar 27 2003

Keywords

Examples

			For n=25: Catalan(25) = binomial(50,25)/26 = 4861946401452 =(2*2*3*3*7*7)*29*31*37*41*43*47;
unitary prime divisors: {29,31,37,41,43,47};
non-unitary prime divisors: {2,3,7}, so a(25) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Boole[n == 1] + PrimeNu@ # - Count[Transpose[FactorInteger@ #][[2]], 1] &@ CatalanNumber@ n, {n, 105}] (* Michael De Vlieger, Feb 25 2017, after Harvey P. Dale at A056169 *)
  • PARI
    catalan(n) = binomial(2*n, n)/(n+1);
    nbud(n) = #select(x->x!=1, factor(n)[,2]);
    a(n) = nbud(catalan(n)); \\ Michel Marcus, Feb 26 2017

Formula

a(n) = A056170(A000108(n)).

A238949 Degree of divisor lattice D(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 2, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 3, 2, 2, 2, 3, 1, 3, 3, 4, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A001221(n) + A056170(n) as given in the Cha, DuCasse, Quintas reference. - Geoffrey Critzer, Mar 02 2015
Additive with a(p^e) = 1+A057427(e-1). - Antti Karttunen, Jul 23 2017
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} 1/p^2 (A085548). - Amiram Eldar, Feb 13 2024

Extensions

More terms from Antti Karttunen, Jul 23 2017

A295666 a(n) = Product_{d|n, gcd(d,n/d) is prime} gcd(d,n/d).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 16, 5, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 1, 16, 1, 1, 1, 4, 9, 1, 1, 16, 7, 25, 1, 4, 1, 81, 1, 16, 1, 1, 1, 16, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 144, 1, 1, 25, 4, 1, 1, 1, 16, 9, 1, 1, 16, 1, 1, 1, 16, 1, 81, 1, 4, 1, 1, 1, 16, 1, 49, 9, 100, 1, 1, 1, 16, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2017

Keywords

Examples

			For n = 12, with divisors 1, 2, 3, 4, 6, 12, we select from the sequence gcd(1,12/1), gcd(2,12/2), gcd(3,12/3), gcd(4,12/4), gcd(6,12/6), gcd(12,12/12) = 1, 2, 1, 1, 2, 1 only those that are primes, namely the two 2's, and form their product, thus a(12) = 2*2 = 4.
For n = 100, with divisors 1, 2, 4, 5, 10, 20, 25, 50, 100, we select from the sequence gcd(1,100/1), gcd(2,100/2), gcd(4,100/4), gcd(5,100/5), gcd(10,100/10), gcd(20,100/20), gcd(25,100/25), gcd(50,100/50), gcd(100,100/100) = 1, 2, 1, 5, 10, 5, 1, 2, 1, only those that are primes, namely 2, 5, 5 and 2, thus a(100) = 2*5*5*2 = 100.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Product[GCD[i,n/i]^Boole[PrimeQ[GCD[i,n/i]]],{i,Divisors[n]}]; Array[a,105] (* Stefano Spezia, Feb 20 2024 *)
  • PARI
    A295666(n) = { my(m=1,p); fordiv(n, d, p = gcd(d, n/d); if(isprime(p), m *= p)); m; };

Formula

a(n) = Product_{d|n} gcd(d,n/d)^A010051(gcd(d,n/d)).
a(n) = A295665(A294876(n)).
Other identities. For all n >= 1:
A001221(a(n)) = A056170(n) = A001221(A003557(n)).
Previous Showing 31-40 of 78 results. Next