cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A115052 Expansion of 1/(3*x^2 - 3*x + 1)^2.

Original entry on oeis.org

1, 6, 21, 54, 108, 162, 135, -162, -1053, -2916, -5832, -8748, -8019, 4374, 41553, 118098, 236196, 354294, 334611, -118098, -1476225, -4251528, -8503056, -12754584, -12223143, 3188646, 49424013, 143489070, 286978140, 430467210, 416118303, -86093442, -1592728677
Offset: 0

Views

Author

Roger L. Bagula, Feb 28 2006

Keywords

Comments

q=1 coefficient expansion of hierarchical lattice renormalization polynomial.

References

  • Heinz-Otto Peitgen and Peter Richter (editors), The Beauty of Fractals, Springer-Verlag, New York, 1986, p. 146.

Crossrefs

Autoconvolution of A057083.

Programs

  • Magma
    I:=[1,6,21,54]; [n le 4 select I[n] else 6*Self(n-1)-15*Self(n-2)+18*Self(n-3)-9*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Sep 20 2011
  • Maple
    A115052 := proc(n) 1/(3*x^2-3*x+1)^2 ; coeftayl(%,x=0,n) ; end proc: # R. J. Mathar, Sep 17 2011

Formula

From Stefano Spezia, Sep 01 2025: (Start)
a(n) = 3^(n/2)*((1 - n)*cos(n*Pi/6) + sqrt(3)*(3 + n)*sin(n*Pi/6)).
E.g.f.: exp(3*x/2)*(cos(sqrt(3)*x/2) + sqrt(3)*(3 + 2*x)*sin(sqrt(3)*x/2)). (End)

A134581 a(n) = 4*a(n-1) - 7*a(n-2) + 6*a(n-3) - 3*a(n-4), starting with 0, 1, 2, 3.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 0, -13, -40, -81, -122, -122, 0, 365, 1094, 2187, 3280, 3280, 0, -9841, -29524, -59049, -88574, -88574, 0, 265721, 797162, 1594323, 2391484, 2391484, 0, -7174453, -21523360, -43046721, -64570082, -64570082, 0
Offset: 0

Views

Author

Paul Curtz, Jan 23 2008

Keywords

Programs

  • Mathematica
    LinearRecurrence[{4, -7, 6, -3}, {0, 1, 2, 3}, 50] (* Harvey P. Dale, Dec 06 2013 *)
    a[ n_] := Nest[# + RotateRight @ #&, {0, -1, 0, 0, 0, 1}, n][[1]]; (* Michael Somos, Jan 18 2023 *)

Formula

G.f.: x*(1-2*x+2*x^2)/((1-x+x^2)*(1-3*x+3*x^2)). - Jaume Oliver Lafont, Aug 30 2009
a(n) = A140343(n+3) - 2*A140343(n+2) + 2*A140343(n+1). - R. J. Mathar, Nov 21 2012
From Peter Bala, Jul 24 2017: (Start)
a(6*n) = 0;
a(6*n+1) = ((-1)^n*3^(3*n) + 1)/2;
a(6*n+2) = ((-1)^n*3^(3*n+1) + 1)/2;
a(6*n+3) = (-1)^n*3^(3*n+1);
a(6*n+4) = a(6*n+5) = ((-1)^n*3^(3*n+2) - 1)/2.
The o.g.f. A(x) satisfies (1 - x)*A(x) = x*A(1 - x).
Logarithmic g.f.: (1/sqrt(3))*arctan(sqrt(3)*x*(1 - x)/(1 - 2*x)) = Sum_{n >= 1} a(n)*x^n/n.
Sum_{n >= 1} a(n)/(n*2^n) = Pi/(2*sqrt(3)). (End)
a(n) = (3^(n/2) * sin(Pi*n/6) + sin(Pi*n/3)) / sqrt(3). - Peter Luschny, Jul 24 2017
2*a(n) = A010892(n-1) + A057083(n-1). - R. J. Mathar, Oct 03 2021
a(n) = -26*a(n-6) + 27*a(n-12) for all n in Z. - Michael Somos, Jan 18 2023

A167925 Triangle, T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2), read by rows.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 0, 2, 6, 12, -1, 0, 9, 32, 75, -1, -4, 9, 80, 275, 684, 0, -8, 0, 192, 1000, 3240, 8232, 1, -8, -27, 448, 3625, 15336, 47677, 122368, 1, 0, -81, 1024, 13125, 72576, 276115, 835584, 2158569, 0, 16, -162, 2304, 47500, 343440, 1599066, 5705728, 16953624, 44010000
Offset: 0

Views

Author

Roger L. Bagula, Nov 15 2009

Keywords

Examples

			Triangle begins as:
   0;
   1,  1;
   1,  2,   3;
   0,  2,   6,   12;
  -1,  0,   9,   32,    75;
  -1, -4,   9,   80,   275,   684;
   0, -8,   0,  192,  1000,  3240,   8232;
   1, -8, -27,  448,  3625, 15336,  47677, 122368;
   1,  0, -81, 1024, 13125, 72576, 276115, 835584, 2158569;
		

Crossrefs

Programs

  • Magma
    A167925:= func< n,k | Round((Sqrt(k+1))^(n-1)*Evaluate(ChebyshevSecond(n), Sqrt(k+1)/2)) >;
    [A167925(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 11 2023
    
  • Mathematica
    (* First program *)
    m[k_]= {{k,1}, {-1,1}};
    v[0, k_]:= {0,1};
    v[n_, k_]:= v[n, k]= m[k].v[n-1,k];
    T[n_, k_]:= v[n, k][[1]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
    (* Second program *)
    A167925[n_, k_]:= (Sqrt[k+1])^(n-1)*ChebyshevU[n-1, Sqrt[k+1]/2];
    Table[A167925[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 11 2023 *)
  • SageMath
    def A167925(n,k): return (sqrt(k+1))^(n-1)*chebyshev_U(n-1, sqrt(k+1)/2)
    flatten([[A167925(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 11 2023

Formula

T(n, k) = (-1)^(n+1) * [x^(n-1)]( 1/(1 + (k+1)*x + (k+1)*x^2) ). - Francesco Daddi, Aug 04 2011 (modified by G. C. Greubel, Sep 11 2023)
From G. C. Greubel, Sep 11 2023: (Start)
T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2).
T(n, 0) = A128834(n).
T(n, 1) = A009545(n) = A099087(n-1).
T(n, 2) = A057083(n-1).
T(n, 3) = A001787(n).
T(n, 4) = A030191(n-1).
T(n, 5) = A030192(n-1).
T(n, 6) = A030240(n-1).
T(n, 7) = A057084(n-1).
T(n, 8) = A057085(n).
T(n, 9) = A057086(n-1).
T(n, 10) = A190871(n).
T(n, 11) = A190873(n). (End)

Extensions

Edited by G. C. Greubel, Sep 11 2023

A194084 Triangle read by rows: a(n)=A135929(n) + A192011(n). Row n gives coefficients of polynomials BC(n,x) in order of decreasing exponents.

Original entry on oeis.org

0, 3, 0, 3, 0, 3, 3, 0, 0, 0, 3, 0, -3, 0, -3, 3, 0, -6, 0, -3, 0, 3, 0, -9, 0, 0, 0, 3, 3, 0, -12, 0, 6, 0, 6, 0, 3, 0, -15, 0, 15, 0, 6, 0, -3, 3, 0, -18, 0, 27, 0, 0, 0, -9, 0
Offset: 0

Views

Author

Paul Curtz, Aug 14 2011

Keywords

Comments

0,
3, 0,
3, 0, 3,
3, 0, 0, 0,
3, 0, -3, 0, -3,
3, 0, -6, 0, -3, 0.
Multiples of 3.
Row sum (from the second) is period 6: 3*A057079(n),"from" A057083 (scaled Chebyshev U(n,x)).
If a(0)=-3, a(n)=3*A192174(n).

Examples

			a(0)=1-1=0, a(1)=1+2=3, a(2)=0+0=0.
		

Formula

BC(0,x)=0, BC(1,x)=3*x, BC(2,x)=3*x^2+3, BC(n,x)=x*BC(n-1,x) - BC(n-2,x), n > 2.

A307395 Expansion of 1/((1 - x) * ((1 - x)^3 + x^3)).

Original entry on oeis.org

1, 4, 10, 19, 28, 28, 1, -80, -242, -485, -728, -728, 1, 2188, 6562, 13123, 19684, 19684, 1, -59048, -177146, -354293, -531440, -531440, 1, 1594324, 4782970, 9565939, 14348908, 14348908, 1, -43046720, -129140162, -258280325, -387420488, -387420488, 1, 1162261468
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2019

Keywords

Crossrefs

Column 5 of A307394.
Partial sums of A057083.

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 3}, {1, 4, 10}, 38] (* Amiram Eldar, May 13 2021 *)
  • PARI
    {a(n) = sum(k=0, n\3, (-1)^k*binomial(n+3, 3*k+3))}
    
  • PARI
    N=66; x='x+O('x^N); Vec(1/((1-x)*((1-x)^3+x^3)))

Formula

a(n) = Sum_{k=0..floor(n/3)} (-1)^k*binomial(n+3,3*k+3).
a(n) = 4*a(n-1) - 6*a(n-2) + 3*a(n-3) for n > 2.
a(6*n) = 1.
a(n) = 1 - A057681(n+3). - Yomna Bakr and Greg Dresden, Apr 22 2024

A099447 An Alexander sequence for the knot 6_3.

Original entry on oeis.org

1, 3, 4, 0, -13, -30, -29, 24, 140, 243, 130, -429, -1348, -1752, 67, 5346, 11795, 10608, -11180, -56541, -93694, -42525, 182452, 535440, 660179, -106782, -2197373, -4613112, -3832996, 5081235, 22766722, 36008115
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

The denominator is a parameterization of the Alexander polynomial for the knot 6_3. 1/(1-3*x+5*x^2-3*x^3+x^4) is the image of the g.f. of A057083 under the modified Chebyshev transform A(x)->(1/(1+x^2)^2)A(x/(1+x^2)).

Programs

  • Mathematica
    LinearRecurrence[{3,-5,3,-1},{1,3,4,0,-13},40] (* Harvey P. Dale, Oct 07 2017 *)

Formula

G.f.: (1-x)*(1+x)*(1+x^2)/(1-3x+5x^2-3x^3+x^4); - corrected Nov 24 2012
a(n)=A099446(n)-A099446(n-2).

A201947 Triangle T(n,k), read by rows, given by (1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,-1,1,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 2, 0, 3, 5, 1, -1, 5, 10, 4, -2, -1, 8, 20, 12, -4, -4, 0, 13, 38, 31, -4, -13, -2, 1, 21, 71, 73, 3, -33, -11, 3, 1, 34, 130, 162, 34, -74, -42, 6, 6, 0, 55, 235, 344, 128, -146, -130, 0, 24, 3, -1
Offset: 0

Views

Author

Philippe Deléham, Dec 06 2011

Keywords

Comments

Row-reversed variant of A123585. Row sums: 2^n.

Examples

			Triangle begins:
1
1, 1
2, 2, 0
3, 5, 1, -1
5, 10, 4, -2, -1
8, 20, 12, -4, -4, 0
13, 38, 31, -4, -13, -2, 1
21, 71, 73, 3, -33, -11, 3, 1
34, 130, 162, 34, -74, -42, 6, 6, 0
55, 235, 344, 128, -146, -130, 0, 24, 3, -1
		

Crossrefs

Cf. Columns: A000045, A001629, A129707.
Diagonals: A010892, A099254, Antidiagonal sums: A158943.

Formula

G.f.: 1/(1-(1+y)*x+(y+1)*(y-1)*x^2).
T(n,0) = A000045(n+1).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-2) with T(0,0)= 1 and T(n,k)= 0 if n
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A090591(n), (-1)^n*A106852(n), A000007(n), A000045(n+1), A000079(n), A057083(n), A190966(n+1) for n = -3, -2, -1, 0, 1, 2, 3 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A010892(n), A000079(n), A030195(n+1), A180222(n+2) for x = 0, 1, 2, 3 respectively.

A202551 Triangle T(n,k), read by rows, given by (1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, -1, 0, -1, 1, -1, 1, 1, -1, -1, 3, -2, -1, 1, 0, 2, -5, 3, 1, -1, 1, -2, -2, 7, -4, -1, 1, 1, -5, 7, 1, -9, 5, 1, -1, 0, -3, 12, -15, 1, 11, -6, -1, 1, -1, 3, 3, -21, 26, -4, -13, 7, 1, -1
Offset: 0

Author

Philippe Deléham, Dec 21 2011

Keywords

Comments

Riordan array (1/(1-x+x^2), x*(x-1)/(1-x+x^2)).

Examples

			Triangle begins :
1
1, -1
0, -1, 1
-1, 1, 1, -1
-1, 3, -2, -1, 1
0, 2, -5, 3, 1, -1
		

Crossrefs

Formula

T(n,k) = T(n-1,k) + T(n-2,k-1) - T(n-1,k-1) - T(n-2,k).
G.f.: 1/(1+(y-1)*x+(1-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A190873(n+1), A190871(n+1), A057086(n), A057085(n+1), A057084(n), A030240(n), A030192(n), A030191(n), A001787(n+1), A057083(n), A099087(n), A010892(n), A000007(n), (-1)^n*A000045(n+1) for x = -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2 respectively.

A227430 Expansion of x^2*(1-x)^3/((1-2*x)*(1-x+x^2)*(1-3*x+3x^2)).

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 29, 45, 90, 220, 561, 1365, 3095, 6555, 13110, 25126, 46971, 87381, 164921, 320001, 640002, 1309528, 2707629, 5592405, 11450531, 23166783, 46333566, 91869970, 181348455, 357913941, 708653429, 1410132405, 2820264810, 5662052980
Offset: 0

Author

Paul Curtz, Jul 11 2013

Keywords

Comments

Consider the binomial transform of 0, 0, 0, 0, 0, 1 (period 6) with its differences:
0, 0, 0, 0, 0, 1, 6, 21, 56, 126,... d(n): after 0, it is A192080.
0, 0, 0, 0, 1, 5, 15, 35, 70, 126,... e(n)
0, 0, 0, 1, 4, 10, 20, 35, 56, 85,... f(n)
0, 0, 1, 3, 6, 10, 15, 21, 29, 45,... a(n)
0, 1, 2, 3, 4, 5, 6, 8, 16, 45,... b(n)
1, 1, 1, 1, 1, 1, 2, 8, 29, 85,... c(n)
0, 0, 0, 0, 0, 1, 6, 21, 56, 126,... d(n).
a(n) + d(n) = A024495(n),
b(n) + e(n) = A131708(n),
c(n) + f(n) = A024493(n).
a(n) - d(n) = 0, 0, 1, 3, 6, 9, 9, 0,... A057083(n-2)
b(n) - e(n) = 0, 1, 2, 3, 3, 0, -9, -27,... A057682(n)
c(n) - f(n) = 1, 1, 1, 0, -3, -9, -18, -27,... A057681(n)
d(n) - a(n) = 0, 0, -1, -3, -6, -9, -9, 0,... -A057083(n-2)
e(n) - b(n) = 0, -1, -2, -3, -3, 0, 9, 27,... -A057682(n)
f(n) - c(n) = -1, -1, -1, 0, 3, 9, 18, 27,... -A057681(n).
The first column is A131531(n).
The first two trisections are multiples of 3. Is the third (1, 10, 29,...) mod 9 A029898(n)?

Examples

			a(6)=6*10-15*6+20*3-15*1+6*0=15, a(7)=90-150+120-45+6=21.
		

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{6,-15,20,-15,6},{0,1,3,6,10},40]] (* Harvey P. Dale, Dec 17 2014 *)
  • PARI
    {a(n) = sum(k=0, n\6, binomial(n, 6*k+2))} \\ Seiichi Manyama, Mar 23 2019

Formula

a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) for n>5, a(0)=a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=10.
a(n) = A024495(n) - A192080(n-5) for n>4.
G.f.: -(x^5 - 3*x^4 + 3*x^3 - x^2)/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)). - Ralf Stephan, Jul 13 2013
a(n) = Sum_{k=0..floor(n/6)} binomial(n,6*k+2). - Seiichi Manyama, Mar 23 2019

Extensions

Definition uses the g.f. of Ralf Stephan.
More terms from Harvey P. Dale, Dec 17 2014

A100240 G.f. A(x) satisfies: 4^n/2 = Sum_{k=0..n} [x^k]A(x)^n and also satisfies: ((4+z)^n + z^n)/2 = Sum_{k=0..n} [x^k](A(x)+z*x)^n for all z, where [x^k]A(x)^n denotes the coefficient of x^k in A(x)^n.

Original entry on oeis.org

1, 1, 2, 2, 0, -4, -6, 2, 22, 30, -26, -154, -172, 288, 1190, 990, -3040, -9620, -4970, 31350, 79120, 12580, -318210, -649610, 174150, 3185686, 5233514, -4273078, -31452228, -40495600, 64593386, 305819154, 290278982, -835918098, -2921409370, -1771072346, 9995237616, 27317409988
Offset: 0

Author

Paul D. Hanna, Nov 30 2004

Keywords

Examples

			From the table of powers of A(x), we see that
4^n/2 = Sum of coefficients [x^0] through [x^n] in A(x)^n:
A^1=[1,1],2,2,0,-4,-6,2,22,30,-26,...
A^2=[1,2,5],8,8,0,-16,-24,8,88,120,...
A^3=[1,3,9,19],30,30,2,-54,-84,20,288,...
A^4=[1,4,14,36,73],112,112,16,-176,-288,32,...
A^5=[1,5,20,60,145,281],420,420,90,-570,-988,...
A^6=[1,6,27,92,255,582,1085],1584,1584,440,-1848,...
A^7=[1,7,35,133,413,1071,2331,4201],6006,6006,2002,...
A^8=[1,8,44,184,630,1816,4460,9320,16305],22880,22880,...
the main diagonal of which is:
[x^n]A(x)^(n+1) = (n+1)*A081696(n) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2*x + Sqrt[1 - 2*x + 5*x^2], {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 07 2021 *)
  • PARI
    a(n)=if(n==0,1,(4^n/2-sum(k=0,n,polcoeff(sum(j=0,min(k,n-1),a(j)*x^j)^n+x*O(x^k),k)))/n)
    
  • PARI
    a(n)=polcoeff(2*x+sqrt(1-2*x+5*x^2+x^2*O(x^n)),n)

Formula

G.f.: A(x) = 2*x+sqrt(1-2*x+5*x^2).
Recurrence: n*a(n) = (2*n-3)*a(n-1) - 5*(n-3)*a(n-2). - Vaclav Kotesovec, Feb 07 2021
Previous Showing 31-40 of 43 results. Next