cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 82 results. Next

A090467 Numbers which are not regular figurative or polygonal numbers of order greater than 2. That is, numbers not of the form 1 + k*m*(m-1)/2 - (m-1)^2 where k > 2 and m > 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 13, 14, 17, 19, 20, 23, 26, 29, 31, 32, 37, 38, 41, 43, 44, 47, 50, 53, 56, 59, 61, 62, 67, 68, 71, 73, 74, 77, 79, 80, 83, 86, 89, 97, 98, 101, 103, 104, 107, 109, 110, 113, 116, 119, 122, 127, 128, 131, 134, 137, 139, 140, 143, 146, 149, 151, 152
Offset: 1

Views

Author

Robert G. Wilson v, Dec 01 2003

Keywords

Comments

The m-th k-gonal number is 1 + k*m*(m-1)/2 - (m-1)^2 = A057145(k,m).
Numbers that are strictly trivially polygonal: numbers m that are only 2-gonal and m-gonal. - Daniel Mondot, Jun 13 2024

Examples

			3 is a triangular number, but is not a k-gonal number for any other k, so 3 is a term.
6 is both a triangular number and a hexagonal number, so 6 is not a term.
		

References

  • Albert H. Beiler, Recreations In The Theory Of Numbers, The Queen Of Mathematics Entertains, Dover, NY, 1964, pp. 185-199.

Crossrefs

Complement is A090466.

Programs

  • Mathematica
    Complement[ Table[i, {i, 300}], Take[ Union[ Flatten[ Table[1 + k*n(n - 1)/2 - (n - 1)^2, {n, 3, 40}, {k, 3, 300}]]], 300]]
  • PARI
    isok(n) = (n < 3) || (vecsum(vector(n-2, k, k+=2; ispolygonal(n, k))) == 1); \\ Michel Marcus, May 01 2016

Formula

An integer n >= 3 is in this sequence iff A176774(n) = n (or, equivalently, A176775(n) = 2). - Max Alekseyev, Apr 24 2018

Extensions

Verified by Don Reble, Mar 12 2006

A334466 Square array read by antidiagonals upwards: T(n,k) is the total number of parts in all partitions of n into consecutive parts that differ by k, with n >= 1, k >= 0.

Original entry on oeis.org

1, 3, 1, 4, 1, 1, 7, 3, 1, 1, 6, 1, 1, 1, 1, 12, 3, 3, 1, 1, 1, 8, 4, 1, 1, 1, 1, 1, 15, 3, 3, 3, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 18, 6, 3, 3, 3, 1, 1, 1, 1, 1, 12, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 28, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 14, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 3, 6, 3, 3, 3, 3, 1
Offset: 1

Views

Author

Omar E. Pol, May 01 2020

Keywords

Comments

The one-part partition n = n is included in the count.
The column k is related to (k+2)-gonal numbers, assuming that 2-gonals are the nonnegative numbers, 3-gonals are the triangular numbers, 4-gonals are the squares, 5-gonals are the pentagonal numbers, and so on.
Note that the number of parts for T(n,0) = A000203(n), equaling the sum of the divisors of n.
For fixed k>0, Sum_{j=1..n} T(j,k) ~ 2^(3/2) * n^(3/2) / (3*sqrt(k)). - Vaclav Kotesovec, Oct 23 2024

Examples

			Square array starts:
   n\k|   0  1  2  3  4  5  6  7  8  9 10 11 12
   ---+---------------------------------------------
   1  |   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   2  |   3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   3  |   4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   4  |   7, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   5  |   6, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   6  |  12, 4, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, ...
   7  |   8, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, ...
   8  |  15, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, ...
   9  |  13, 6, 4, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, ...
  10  |  18, 5. 3. 1. 3. 1, 3, 1, 3, 1, 1, 1, 1, ...
  11  |  12, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, ...
  12  |  28, 4, 6, 4, 3, 1, 3, 1, 3, 1, 3, 1, 1, ...
  ...
For n = 9 we have that:
For k = 0 the partitions of 9 into consecutive parts that differ by 0 (or simply: the partitions of 9 into equal parts) are [9], [3,3,3], [1,1,1,1,1,1,1,1,1]. In total there are 13 parts, so T(9,0) = 13.
For k = 1 the partitions of 9 into consecutive parts that differ by 1 (or simply: the partitions of 9 into consecutive parts) are [9], [5,4], [4,3,2]. In total there are six parts, so T(9,1) = 6.
For k = 2 the partitions of 9 into consecutive parts that differ by 2 are [9], [5, 3, 1]. In total there are four parts, so T(9,2) = 4.
		

Crossrefs

Columns k: A000203 (k=0), A204217 (k=1), A066839 (k=2), A330889 (k=3), A334464 (k=4), A334732 (k=5), A334949 (k=6), A377300 (k=7), A377301 (k=8).
Triangles whose row sums give the column k: A127093 (k=0), A285914 (k=1), A330466 (k=2) (conjectured), A330888 (k=3), A334462 (k=4), A334540 (k=5), A339947 (k=6).
Sequences of number of partitions related to column k: A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), A334461 (k=4), A334541 (k=5), A334948 (k=6).
Tables of partitions related to column k: A010766 (k=0), A286001 (k=1), A332266 (k=2), A334945 (k=3), A334618 (k=4).
Polygonal numbers related to column k: A001477 (k=0), A000217 (k=1), A000290 (k=2), A000326 (k=3), A000384 (k=4), A000566 (k=5), A000567 (k=6).

Programs

  • Mathematica
    nmax = 14;
    col[k_] := col[k] = CoefficientList[Sum[n x^(n(k n - k + 2)/2)/(1 - x^n), {n, 1, nmax}] + O[x]^(nmax+1), x];
    T[n_, k_] := col[k][[n+1]];
    Table[T[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 30 2020 *)

Formula

The g.f. for column k is Sum_{n>=1} n*x^(n*(k*n-k+2)/2)/(1-x^n). (For proof, see A330889. - N. J. A. Sloane, Nov 21 2020)

A350405 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

37, 142, 285, 536, 911, 1268, 1909, 2713, 3876, 5179, 6891, 8901, 11190, 14384, 18087, 21697, 27055, 32166, 39111, 46560, 53892, 64412, 73949, 86778, 98202, 113635, 130088, 148051, 167505, 190968, 214955, 240143, 269775, 297615, 331201, 367429, 409179, 451340, 497830
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 29 2021

Keywords

Examples

			For n = 3: 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
		

Crossrefs

Programs

  • Mathematica
    Do[i=1;While[b=PolygonalNumber[n,Range@i++];!IntegerQ[t=Min[First/@Select[Tally[Select[Total/@Subsets[b,{n}],#<=Max@b&]],Last@#==n&]]]];Print@t,{n,3,10}] (* Giorgos Kalogeropoulos, Dec 30 2021 *)

Formula

a(n) >= A006484(n). - David A. Corneth, Dec 30 2021

Extensions

a(10)-a(31) from Michael S. Branicky, Dec 29 2021
More terms from David A. Corneth, Dec 30 2021

A139606 a(n) = 15*n + 6.

Original entry on oeis.org

6, 21, 36, 51, 66, 81, 96, 111, 126, 141, 156, 171, 186, 201, 216, 231, 246, 261, 276, 291, 306, 321, 336, 351, 366, 381, 396, 411, 426, 441, 456, 471, 486, 501, 516, 531, 546, 561, 576, 591, 606, 621, 636, 651, 666, 681, 696, 711, 726, 741, 756, 771, 786
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

Numbers of the 6th column of positive numbers in the square array of nonnegative and polygonal numbers A139600.
6th transversal numbers (or 6-transversal numbers): (A000217(6)-6)*n + 6.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

a(n) = A057145(n+2,6).
G.f.: 3*(2+3*x)/(x-1)^2 . - R. J. Mathar, Jul 28 2016
From Elmo R. Oliveira, Apr 12 2024: (Start)
E.g.f.: 3*exp(x)*(2 + 5*x).
a(n) = 3*A016873(n) = A008597(n) + 6.
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A254407 a(n) = n*(n+1)*(11*n +10)/6.

Original entry on oeis.org

0, 7, 32, 86, 180, 325, 532, 812, 1176, 1635, 2200, 2882, 3692, 4641, 5740, 7000, 8432, 10047, 11856, 13870, 16100, 18557, 21252, 24196, 27400, 30875, 34632, 38682, 43036, 47705, 52700, 58032, 63712, 69751, 76160, 82950, 90132, 97717, 105716, 114140, 123000
Offset: 0

Views

Author

Bruno Berselli, Jan 30 2015

Keywords

Comments

Similar sequences of the type m*P(s,m) - Sum_{i=1..m} P(s-1,i), where P(s,m) is the m-th s-gonal number:
s=3: A027480(n) = (n+1)*A000217(n+1) - Sum_{i=1..n+1} i;
s=4: A162148(n) = (n+1)*A000290(n+1) - Sum_{i=1..n+1} A000217(i);
s=5: A245301(n) = (n+1)*A000326(n+1) - Sum_{i=1..n+1} A000290(i);
s=6: A085788(n) = (n+1)*A000384(n+1) - Sum_{i=1..n+1} A000326(i);
s=7: a(n) = (n+1)*A000566(n+1) - Sum_{i=1..n+1} A000384(i).

Examples

			532 is the 7th term because A000566(7)=112 and Sum_{i=1..7} A000384(i)=252, therefore 7*112-252 = 532.
		

Crossrefs

Programs

  • Magma
    [n*(n+1)*(11*n+10)/6: n in [0..40]];
    
  • Maple
    A254407:= n-> n*(n+1)*(11*n+10)/6; seq(A254407(n), n=0..50); # G. C. Greubel, Mar 31 2021
  • Mathematica
    Table[n (n + 1) (11 n + 10)/6, {n, 0, 40}]
    Column[CoefficientList[Series[x (7 + 4 x) / (1 - x)^4, {x, 0, 60}], x]] (* Vincenzo Librandi, Jan 31 2015 *)
  • Maxima
    makelist(n*(n+1)*(11*n+10)/6, n, 0, 40);
  • PARI
    vector(40, n, n--; n*(n+1)*(11*n+10)/6)
    
  • Sage
    [n*(n+1)*(11*n+10)/6 for n in (0..40)]
    

Formula

G.f.: x*(7 + 4*x)/(1 - x)^4.
a(-n) = -A132112(n-1).
a(n) = Sum_{k=0..n} A011875(11*k+2).
Equivalently, partial sums of A254963.
E.g.f.: x*(42 + 54*x + 11*x^2)*exp(x)/6. - G. C. Greubel, Mar 31 2021

A162607 a(n) = n*(n^2 - 4*n + 5)/2.

Original entry on oeis.org

0, 1, 1, 3, 10, 25, 51, 91, 148, 225, 325, 451, 606, 793, 1015, 1275, 1576, 1921, 2313, 2755, 3250, 3801, 4411, 5083, 5820, 6625, 7501, 8451, 9478, 10585, 11775, 13051, 14416, 15873, 17425, 19075, 20826, 22681, 24643, 26715, 28900, 31201, 33621
Offset: 0

Views

Author

R. J. Mathar and Omar E. Pol, Jul 21 2009

Keywords

Comments

Positive values are the row sums of triangle A159798.

Crossrefs

Cf. A159798.

Programs

Formula

G.f.: x*(1 - 3*x + 5*x^2)/(1 - x)^4. - Vincenzo Librandi, Dec 19 2012
a(n) = A057145(n-1,n) = A072277(n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: x*(x^2 - x + 2)*exp(x)/2. - G. C. Greubel, Apr 21 2018

A320943 Numbers that have exactly 26 representations as a k-gonal number, P(n,k) = n*((k-2)*n - (k-4))/2, k and n >= 3.

Original entry on oeis.org

1559439365121, 2468046593376, 7760419091425
Offset: 1

Views

Author

Hugh Erling, Oct 24 2018

Keywords

Examples

			a(1): 1559439365121 has representations P(n,k) = P(3, 519813121708)=P(6, 103962624343)=P(9, 43317760144)=P(11, 28353443004)=P(18, 10192414153)=P(27, 4442847196)=P(33, 2953483648)=P(57, 977092336)=P(66, 727011361)=P(69, 664722664)=P(81, 481308448)=P(86, 426659199)=P(129, 188885584)=P(131, 183140268)=P(171, 107288572)=P(209, 71744544)=P(237, 55761976)=P(414, 18240979)=P(473, 13969968)=P(513, 11874388)=P(711, 6178324)=P(729, 5876784)=P(1881, 881968)=P(3537, 249376)=P(16899, 10924)=P(720981, 8).
a(2): 2468046593376 has representations P(n,k) = P(3, 822682197793)=P(6, 164536439560)=P(12, 37394645356)=P(18, 16131023488)=P(24, 8942197804)=P(26, 7593989520)=P(39, 3330697159)=P(42, 2866488496)=P(56, 1602627660)=P(72, 965589436)=P(84, 707988124)=P(96, 541238290)=P(116, 370021980)=P(126, 313402744)=P(392, 32204796)=P(416, 28591830)=P(576, 14903665)=P(647, 11809911)=P(783, 8061483)=P(936, 5640220)=P(1827, 1479601)=P(2912, 582306)=P(4302, 266776)=P(5823, 145603)=P(7056, 99160)=P(145551, 235).
a(3): 7760419091425 has representations P(n,k) = P(5, 776041909144)=P(7, 369543766260)=P(10, 172453757589)=P(13, 99492552456)=P(19, 45382567788)=P(25, 25868063640)=P(35, 13042721164)=P(37, 11652280920)=P(49, 6598995828)=P(55, 5225871444)=P(65, 3730970719)=P(82, 2336771785)=P(143, 764347396)=P(145, 743335164)=P(154, 658723293)=P(205, 371134344)=P(290, 185190769)=P(325, 147396376)=P(475, 68935548)=P(1225, 10351368)=P(1378, 8179601)=P(1729, 5194893)=P(2755, 2045644)=P(7585, 269814)=P(1969825, 6)=P(3939649, 3).
		

Crossrefs

Programs

A323345 Square array read by ascending antidiagonals: T(n, k) is the number of partitions of n where parts, if sorted in ascending order, form an arithmetic progression (AP) with common difference of k; n >= 1, k >= 0.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 4, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 4, 2, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Luc Rousseau, Jan 11 2019

Keywords

Comments

T(n, k) is the number of positive integers in the sequence defined, for all i >= 1, by x_1 = n and x_i = (i-1)*(x_(i-1)-k)/i; or defined equivalently by x_i=n/i-(k/2)*(i-1). An x_i positive and integer characterizes the AP-partition with smallest part x_i and number of parts i.
T(n, k) is the number of i, positive integers, such that n - P(k+2,i) is both nonnegative and divisible by i, where P(r,i) denotes the i-th r-gonal number (see A057145).

Examples

			There are 4 partitions of 150 such that the parts form an arithmetic progression with common difference of 9:
150 = 150
150 = 41 + 50 + 59
150 = 24 + 33 + 42 + 51
150 = 12 + 21 + 30 + 39 + 48
Then, T(150,9) = 4.
Array begins:
     k 0 1 2 3 4 5 6 7 8 9
   n +--------------------
   1 | 1 1 1 1 1 1 1 1 1 1
   2 | 2 1 1 1 1 1 1 1 1 1
   3 | 2 2 1 1 1 1 1 1 1 1
   4 | 3 1 2 1 1 1 1 1 1 1
   5 | 2 2 1 2 1 1 1 1 1 1
   6 | 4 2 2 1 2 1 1 1 1 1
   7 | 2 2 1 2 1 2 1 1 1 1
   8 | 4 1 2 1 2 1 2 1 1 1
   9 | 3 3 2 2 1 2 1 2 1 1
  10 | 4 2 2 1 2 1 2 1 2 1
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] :=
    Module[{c = 0, i = 1, x = n},
      While[x >= 1, If[IntegerQ[x], c++]; i++; x = (i-1)*(x-k)/i]; c]
    A004736[n_] := Binomial[Floor[3/2 + Sqrt[2*n]], 2] - n + 1
    A002260[n_] := n - Binomial[Floor[1/2 + Sqrt[2*n]], 2]
    a[n_] := T[A004736[n], A002260[n] - 1]
    Table[a[n], {n, 1, 91}]
    (* Second program: *)
    nmax = 14;
    col[k_] := col[k] = CoefficientList[Sum[x^(n(k n - k + 2)/2 - 1)/(1 - x^n), {n, 1, nmax}] + O[x]^nmax, x];
    T[n_, k_] := col[k][[n]];
    Table[T[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 30 2020 *)
  • PARI
    T(n,k)=c=0;i=1;x=n;while(x>=1,if(frac(x)==0,c++);i++;x=n/i-(k/2)*(i-1));c
    for(s=1,13,for(k=0,s-1,n=s-k;print1(T(n,k),", ")))

Formula

T(n, 0) = A000005(n), the number of divisors of n.
T(n, 1) = A001227(n), the number of odd divisors of n.
T(n, 2) = A038548(n), the number of divisors of n that are at most sqrt(n).
T(n, 3) = A117277(n).
The g.f. for column d is Sum_{k>=1} x^(k*(d*k-d+2)/2)/(1-x^k) [information taken from A117277]. - Joerg Arndt, May 05 2020

A373169 Square array read by ascending antidiagonals: T(n,k) = noz(T(n,k-1) + (k-1)*(n-2) + 1), with T(n,1) = 1, n >= 2, k >= 1, where noz(n) = A004719(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 9, 1, 5, 1, 6, 12, 16, 6, 6, 1, 7, 15, 22, 25, 12, 7, 1, 8, 18, 28, 35, 36, 19, 8, 1, 9, 21, 34, 45, 51, 49, 27, 9, 1, 1, 24, 4, 55, 66, 7, 64, 36, 1, 1, 11, 18, 46, 29, 81, 91, 29, 81, 46, 2, 1, 12, 3, 43, 75, 6, 112, 12, 54, 1, 57, 3
Offset: 2

Views

Author

Paolo Xausa, May 27 2024

Keywords

Comments

Row n is the zeroless analog of the positive n-gonal numbers.

Examples

			The array begins:
  n\k|  1  2   3   4   5    6    7    8    9   10  ...
  ----------------------------------------------------
   2 |  1, 2,  3,  4,  5,   6,   7,   8,   9,   1, ... = A177274
   3 |  1, 3,  6,  1,  6,  12,  19,  27,  36,  46, ... = A243658 (from n = 1)
   4 |  1, 4,  9, 16, 25,  36,  49,  64,  81,   1, ... = A370812
   5 |  1, 5, 12, 22, 35,  51,   7,  29,  54,  82, ... = A373171
   6 |  1, 6, 15, 28, 45,  66,  91,  12,  45,  82, ... = A373172
   7 |  1, 7, 18, 34, 55,  81, 112, 148, 189, 235, ...
   8 |  1, 8, 21,  4, 29,   6,  43,  86, 135,  19, ...
   9 |  1, 9, 24, 46, 75, 111, 154,  24,  81, 145, ...
  10 |  1, 1, 18, 43, 76, 117, 166, 223, 288, 361, ...
  ...      |                                     \______ A373170 (main diagonal)
        A004719 (from n = 2)
		

Crossrefs

Cf. rows 2..6: A177274, A243658, A370812, A373171, A373172.
Cf. A373170 (main diagonal).

Programs

  • Mathematica
    noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
    A373169[n_, k_] := A373169[n, k] = If[k == 1, 1, noz[A373169[n, k-1] + (k-1)*(n-2) + 1]];
    Table[A373169[n - k + 1, k], {n, 2, 15}, {k, n - 1}]
  • PARI
    noz(n) = fromdigits(select(sign, digits(n)));
    T(n,k) = if (k==1, 1, noz(T(n,k-1) + (k-1)*(n-2) + 1));
    matrix(7,7,n,k,T(n+1,k)) \\ Michel Marcus, May 30 2024

A139618 a(n) = 153*n + 18.

Original entry on oeis.org

18, 171, 324, 477, 630, 783, 936, 1089, 1242, 1395, 1548, 1701, 1854, 2007, 2160, 2313, 2466, 2619, 2772, 2925, 3078, 3231, 3384, 3537, 3690, 3843, 3996, 4149, 4302, 4455, 4608, 4761, 4914, 5067, 5220, 5373, 5526, 5679, 5832, 5985
Offset: 0

Views

Author

Omar E. Pol, May 21 2008

Keywords

Comments

Numbers of the 18th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 18th column in the square array A057145.

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Apr 04 2024: (Start)
G.f.: 9*(2+15*x)/(x-1)^2.
E.g.f.: 9*exp(x)*(2 + 17*x).
a(n) = 9*(A008599(n) + 2).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
Previous Showing 21-30 of 82 results. Next