cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 182 results. Next

A077585 a(n) = 2^(2^n - 1) - 1.

Original entry on oeis.org

0, 1, 7, 127, 32767, 2147483647, 9223372036854775807, 170141183460469231731687303715884105727, 57896044618658097711785492504343953926634992332820282019728792003956564819967
Offset: 0

Views

Author

Henry Bottomley, Nov 07 2002

Keywords

Comments

a(2), a(3), a(5) and a(7) are prime; a(11) is not.
Let S be a set of n elements. First we perform a set partition on S. Let SU be the set of all nonempty subsets of S. As is well known, 2^n - 1 is the number of nonempty subsets of a set with n elements (see A000225). That is, 2^n - 1 is the number of elements |SU| of SU. In the second step, we select k elements from SU. We want to know how many different selections are possible. Let W be the resulting set of selections formed from SU. Then the number of elements |W| of W is |W| = Sum_{k=1..2^n-1} binomial(2^n-1,k) = 2^(2^n-1) - 1 = A077585. Example: |W(n)| = a(n=2) = 7, because W = {[[1, 2]], [[1]], [[1, 2], [1]], [[1, 2], [2], [1]], [[1, 2], [2]], [[2], [1]], [[2]]}. - Thomas Wieder, Nov 08 2007
These are so-called double Mersenne numbers, sometimes denoted MM(n) where M = A000225. MM(n) is prime iff M(n) = 2^n-1 is a Mersenne prime exponent (A000043), which isn't possible unless n itself is also in A000043. Primes of this form are called double Mersenne primes MM(p). For all Mersenne exponents between 7 and 61, factors of MM(p) are known. MM(61) is far too large for any currently known primality test, but a distributed search for factors of this and other MM(p) is ongoing, see the doublemersenne.org web site. - M. F. Hasler, Mar 05 2020
This is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Dec 05 2022

Examples

			a(5) = 2^(2^5 - 1) - 1 = 2^31 - 1 = 2147483647.
		

Crossrefs

Programs

  • Maple
    a:= n-> 2^(2^n-1)-1:
    seq(a(n), n=0..8); # Thomas Wieder, Nov 08 2007
  • Mathematica
    2^(2^Range[0, 9] - 1) - 1 (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
  • PARI
    a(n)=if(n<1,0,-1+2*(1+a(n-1))^2)
    
  • PARI
    apply( {A077585(n)=1<<(1<M. F. Hasler, Mar 05 2020
    
  • Python
    def A077585(n): return (1<<(1<Chai Wah Wu, Mar 14 2023

Formula

a(n) = A000225(A000225(n)).
a(n) = A058891(n+1) - 1. - corrected by Maurizio De Leo, Feb 25 2015
a(n) = (A001146(n) - 2)/2.
a(n) = A056220(1+a(n-1)).
a(n) = Sum_{k=1..2^n-1} binomial(2^n-1,k). - Thomas Wieder, Nov 08 2007
a(n) = 2*a(n-1)^2 + 4*a(n-1) + 1. - Roderick MacPhee, Oct 05 2012

Extensions

Corrected by Lekraj Beedassy, Jan 02 2007

A319189 Number of uniform regular hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 2, 3, 10, 29, 3780, 5012107
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is uniform if all edges have the same size, and regular if all vertices have the same degree. The span of a hypergraph is the union of its edges.
Also the number of 0-1 matrices with n columns, all distinct rows, no zero columns, equal row-sums, and equal column-sums, up to a permutation of the rows.

Examples

			The a(4) = 10 edge-sets:
               {{1,2,3,4}}
              {{1,2},{3,4}}
              {{1,3},{2,4}}
              {{1,4},{2,3}}
            {{1},{2},{3},{4}}
        {{1,2},{1,3},{2,4},{3,4}}
        {{1,2},{1,4},{2,3},{3,4}}
        {{1,3},{1,4},{2,3},{2,4}}
    {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
Inequivalent representatives of the a(4) = 10 matrices:
  [1 1 1 1]
.
  [1 1 0 0] [1 0 1 0] [1 0 0 1]
  [0 0 1 1] [0 1 0 1] [0 1 1 0]
.
  [1 0 0 0] [1 1 0 0] [1 1 0 0] [1 0 1 0] [1 1 1 0]
  [0 1 0 0] [1 0 1 0] [1 0 0 1] [1 0 0 1] [1 1 0 1]
  [0 0 1 0] [0 1 0 1] [0 1 1 0] [0 1 1 0] [1 0 1 1]
  [0 0 0 1] [0 0 1 1] [0 0 1 1] [0 1 0 1] [0 1 1 1]
.
  [1 1 0 0]
  [1 0 1 0]
  [1 0 0 1]
  [0 1 1 0]
  [0 1 0 1]
  [0 0 1 1]
		

Crossrefs

Uniform hypergraphs are counted by A306021. Unlabeled uniform regular multiset partitions are counted by A319056. Regular graphs are A295193. Uniform clutters are A299353.

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{m}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{m,0,n},{k,1,Binomial[n,m]}],{n,5}]

Extensions

a(7) from Jinyuan Wang, Jun 20 2020

A326358 Number of maximal antichains of subsets of {1..n}.

Original entry on oeis.org

1, 2, 3, 7, 29, 376, 31746, 123805914
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other.

Examples

			The a(0) = 1 through a(3) = 7 maximal antichains:
  {}  {}   {}      {}
      {1}  {12}    {123}
           {1}{2}  {1}{23}
                   {2}{13}
                   {3}{12}
                   {1}{2}{3}
                   {12}{13}{23}
		

Crossrefs

Antichains of sets are A000372.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • GAP
    LoadPackage("grape");
          maxachP:=function(n) local g,G;
           g:=Graph(Group(()), Combinations([1..n]), function(x, g) return x; end,
              function(x, y) return not IsSubset(x, y) and not IsSubset(y, x); end, true);
           G:=AutGroupGraph(g);
           return Sum(CompleteSubgraphs(NewGroupGraph(G, g), -1, 2),
                  function(c) return Length(Orbit(G, c, OnSets)); end);
         end;
           List([0..7],maxachP); # Mamuka Jibladze, Jan 26 2021
  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n]],SubsetQ]]],{n,0,5}]
    (* alternatively *)
    maxachP[n_]:=FindIndependentVertexSet[
      Flatten[Map[Function[s, Map[# \[DirectedEdge] s &, Most[Subsets[s]]]],
        Subsets[Range[n]]]], Infinity, All];
    Table[Length[maxachP[n]],{n,0,6}] (* Mamuka Jibladze, Jan 25 2021 *)

Formula

For n > 0, a(n) = A326359(n) + 1.

Extensions

a(6)-a(7) from Mamuka Jibladze, Jan 26 2021

A367770 Number of sets of nonempty non-singleton subsets of {1..n} satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 1, 2, 15, 558, 81282, 39400122, 61313343278, 309674769204452
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
Excludes all set-systems with more edges than covered vertices, but this condition is not sufficient.

Examples

			The a(3) = 15 set-systems:
  {}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,2},{1,2,3}}
  {{1,3},{2,3}}
  {{1,3},{1,2,3}}
  {{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
  {{1,2},{2,3},{1,2,3}}
  {{1,3},{2,3},{1,2,3}}
		

Crossrefs

Set-systems without singletons are counted by A016031, covering A323816.
The version for simple graphs is A133686, covering A367869.
The complement is counted by A367769.
The complement allowing singletons and empty sets is A367901.
Allowing singletons gives A367902, ranks A367906.
The complement allowing singletons is A367903, ranks A367907.
These set-systems have ranks A367906 /\ A326781.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Subsets[Range[n]], Length[#]>1&]], Select[Tuples[#], UnsameQ@@#&]!={}&]],{n,0,3}]

Extensions

a(6)-a(8) from Christian Sievers, Jul 28 2024

A326961 Number of set-systems covering n vertices where every vertex is the unique common element of some subset of the edges, also called covering T_1 set-systems.

Original entry on oeis.org

1, 1, 2, 36, 19020, 2010231696, 9219217412568364176, 170141181796805105960861096082778425120, 57896044618658097536026644159052312977171804852352892309392604715987334365792
Offset: 0

Views

Author

Gus Wiseman, Aug 12 2019

Keywords

Comments

Same as A059523 except with a(1) = 1 instead of 2.
Alternatively, these are set-systems covering n vertices whose dual is a (strict) antichain. A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. An antichain is a set of sets, none of which is a subset of any other.

Examples

			The a(3) = 36 set-systems:
  {{1}{2}{3}}        {{12}{13}{23}{123}}     {{2}{3}{12}{13}{23}}
  {{12}{13}{23}}     {{1}{2}{3}{12}{13}}     {{2}{3}{12}{13}{123}}
  {{1}{2}{3}{12}}    {{1}{2}{3}{12}{23}}     {{2}{12}{13}{23}{123}}
  {{1}{2}{3}{13}}    {{1}{2}{3}{13}{23}}     {{3}{12}{13}{23}{123}}
  {{1}{2}{3}{23}}    {{1}{2}{12}{13}{23}}    {{1}{2}{3}{12}{13}{23}}
  {{1}{2}{13}{23}}   {{1}{2}{3}{12}{123}}    {{1}{2}{3}{12}{13}{123}}
  {{1}{2}{3}{123}}   {{1}{2}{3}{13}{123}}    {{1}{2}{3}{12}{23}{123}}
  {{1}{3}{12}{23}}   {{1}{2}{3}{23}{123}}    {{1}{2}{3}{13}{23}{123}}
  {{2}{3}{12}{13}}   {{1}{3}{12}{13}{23}}    {{1}{2}{12}{13}{23}{123}}
  {{1}{12}{13}{23}}  {{1}{2}{13}{23}{123}}   {{1}{3}{12}{13}{23}{123}}
  {{2}{12}{13}{23}}  {{1}{3}{12}{23}{123}}   {{2}{3}{12}{13}{23}{123}}
  {{3}{12}{13}{23}}  {{1}{12}{13}{23}{123}}  {{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

Covering set-systems are A003465.
Covering T_0 set-systems are A059201.
The version with empty edges allowed is A326960.
The non-covering version is A326965.
Covering set-systems whose dual is a weak antichain are A326970.
The unlabeled version is A326974.
The BII-numbers of T_1 set-systems are A326979.

Programs

  • Mathematica
    tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&tmQ[#]&]],{n,0,3}]

Formula

Inverse binomial transform of A326965.

A327103 Minimum vertex-degree in the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
In a set-system, the degree of a vertex is the number of edges containing it.

Examples

			The BII-number of {{2},{3},{1,2},{1,3},{2,3}} is 62, and its degrees are (2,3,3), so a(62) = 2.
		

Crossrefs

The maximum vertex-degree is A327104.
Positions of 1's are A327105.
Positions of terms > 1 are A327107.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[If[n==0,0,Min@@Length/@Split[Sort[Join@@bpe/@bpe[n]]]],{n,0,100}]

A003025 Number of n-node labeled acyclic digraphs with 1 out-point.

Original entry on oeis.org

1, 2, 15, 316, 16885, 2174586, 654313415, 450179768312, 696979588034313, 2398044825254021110, 18151895792052235541515, 299782788128536523836784628, 10727139906233315197412684689421
Offset: 1

Views

Author

Keywords

Comments

From Gus Wiseman, Jan 02 2024: (Start)
Also the number of n-element sets of finite nonempty subsets of {1..n}, including a unique singleton, such that there is exactly one way to choose a different element from each. For example, the a(0) = 0 through a(3) = 15 set-systems are:
. {{1}} {{1},{1,2}} {{1},{1,2},{1,3}}
{{2},{1,2}} {{1},{1,2},{2,3}}
{{1},{1,3},{2,3}}
{{2},{1,2},{1,3}}
{{2},{1,2},{2,3}}
{{2},{1,3},{2,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}
These set-systems are all connected.
The case of labeled graphs is A000169.
(End)

Examples

			a(2) = 2: o-->--o (2 ways)
a(3) = 15: o-->--o-->--o (6 ways) and
o ... o o-->--o
.\ . / . \ . /
. v v ... v v
.. o ..... o
(3 ways) (6 ways)
		

References

  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A058876.
Row sums of A350487.
The unlabeled version is A350415.
Column k=1 of A361718.
For any number of sinks we have A003024, unlabeled A003087.
For n-1 sinks we have A058877.
For a fixed sink we have A134531 (up to sign), column k=1 of A368602.

Programs

Formula

a(n) = (-1)^(n-1) * n * A134531(n). - Gus Wiseman, Jan 02 2024

Extensions

More terms from Vladeta Jovovic, Apr 10 2001

A326940 Number of T_0 set-systems on n vertices.

Original entry on oeis.org

1, 2, 7, 112, 32105, 2147161102, 9223372004645756887, 170141183460469231537996491362807709908, 57896044618658097711785492504343953921871039195927143534469727707459805807105
Offset: 0

Views

Author

Gus Wiseman, Aug 07 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(0) = 1 through a(2) = 7 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
		

Crossrefs

The non-T_0 version is A058891 shifted to the left.
The covering case is A059201.
The version with empty edges is A326941.
The unlabeled version is A326946.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]],{n,0,3}]

Formula

Binomial transform of A059201.

A327039 Number of set-systems covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 2, 7, 88, 25421, 2077323118, 9221293242272922067, 170141182628636920942528022609657505092
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts set-systems that are cointersecting, meaning their dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(2) = 7 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
		

Crossrefs

The unlabeled multiset partition version is A319752.
The BII-numbers of these set-systems are A326853.
The pairwise intersecting case is A327038.
The covering case is A327040.
The case where the dual is strict is A327052.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]

Formula

Binomial transform of A327040.

Extensions

a(5)-a(7) from Christian Sievers, Oct 22 2023

A368600 Number of ways to choose a set of n nonempty subsets of {1..n} such that it is not possible to choose a different element from each.

Original entry on oeis.org

0, 0, 0, 3, 164, 18625, 5491851, 4649088885, 12219849683346
Offset: 0

Views

Author

Gus Wiseman, Jan 01 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(3) = 3 set-systems:
  {{1},{2},{1,2}}
  {{1},{3},{1,3}}
  {{2},{3},{2,3}}
		

Crossrefs

For a unique choice we have A003024, any length A367904 (ranks A367908).
Sets of n nonempty subsets of {1..n} are counted by A136556.
For any length we have A367903, ranks A367907, no singletons A367769.
The complement is A368601, any length A367902 (see also A367770, A367906).
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,3}]
  • Python
    from itertools import combinations, product, chain
    from scipy.special import comb
    def v(c):
        for elements in product(*c):
            if len(set(elements)) == len(elements):
                return True
        return False
    def a(n):
        if n == 0:
            return 1
        subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in range(1, n + 1)))
        cs = combinations(subsets, n)
        c = sum(1 for c in cs if v(c))
        return c
    [print(int(comb(2**n-1,n) - a(n))) for n in range(7)] # Robert P. P. McKone, Jan 02 2024

Formula

a(n) = A136556(n) - A368601(n).

Extensions

a(6) from Robert P. P. McKone, Jan 02 2024
a(7)-a(8) from Christian Sievers, Jul 25 2024
Previous Showing 51-60 of 182 results. Next