cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 75 results. Next

A164900 a(2n) = 4*n*(n+1) + 3; a(2n+1) = 2*n*(n+2) + 3.

Original entry on oeis.org

3, 3, 11, 9, 27, 19, 51, 33, 83, 51, 123, 73, 171, 99, 227, 129, 291, 163, 363, 201, 443, 243, 531, 289, 627, 339, 731, 393, 843, 451, 963, 513, 1091, 579, 1227, 649, 1371, 723, 1523, 801, 1683, 883, 1851, 969, 2027, 1059, 2211, 1153
Offset: 0

Views

Author

Paul Curtz, Aug 30 2009

Keywords

Comments

a(n) = largest odd divisor of A059100(n+1). Proof: Observe that a(2n) = A059100(2n+1) and a(2n+1) = (A059100(2n+2))/2 and note that (A059100(m))/2 is odd for even m. - Jeremy Gardiner, Aug 25 2013
a(n) is also the denominator of the (n+1)-st largest circle in a special case of the Pappus chain inspired by the Yin-Yang symbol. See illustration in the links. - Kival Ngaokrajang, Jun 20 2015

Crossrefs

Programs

  • Magma
    [((-1)^n+3)*(n^2+2*n+3)/4: n in [0..50]]; // Vincenzo Librandi, Aug 07 2011
    
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {3, 3, 11, 9, 27, 19}, 50] (* Amiram Eldar, Aug 09 2022 *)
  • PARI
    vector(100,n,n--;(1/4)*((-1)^n+3)*(n^2+2*n+3)) \\ Derek Orr, Jun 27 2015

Formula

a(2n) = A164897(n); a(2n+1) = A058331(n+1).
a(n) = A164845(n-1)/A026741(n), n>0.
G.f.: ( -3-3*x-2*x^2-3*x^4-x^5 ) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Jan 21 2011
a(n) = ((-1)^n+3)*(n^2+2*n+3)/4. - Bruno Berselli, Jan 21 2011
From Amiram Eldar, Aug 09 2022: (Start)
a(n) = numerator(((n+1)^2 + 2)/2).
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(2))*Pi/sqrt(2) + tanh(Pi/sqrt(2))*Pi/(2*sqrt(2)) - 1)/2. (End)
E.g.f.: ((6 + 3*x + 2*x^2)*cosh(x) + (3 + 6*x + x^2)*sinh(x))/2. - Stefano Spezia, Oct 19 2024

A213921 Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places clockwise. Table T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 8, 9, 13, 17, 14, 6, 16, 21, 26, 22, 11, 12, 25, 31, 37, 32, 18, 15, 20, 36, 43, 50, 44, 27, 23, 24, 30, 49, 57, 65, 58, 38, 33, 19, 35, 42, 64, 73, 82, 74, 51, 45, 28, 29, 48, 56, 81, 91, 101, 92, 66, 59, 39, 34, 41, 63, 72, 100, 111
Offset: 1

Views

Author

Boris Putievskiy, Mar 05 2013

Keywords

Comments

A permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Enumeration table T(n,k) is layer by layer. The order of the list:
T(1,1)=1;
T(1,2), T(2,1), T(2,2);
. . .
T(1,n), T(3,n), ... T(n,3), T(n,1), T(2,n), T(4,n), ... T(n,4), T(n,2);
...

Examples

			The start of the sequence as table:
   1   2   5  10  17  26 ...
   3   4   8  14  22  32 ...
   7   9   6  11  18  27 ...
  13  16  12  15  23  33 ...
  21  25  20  24  19  28 ...
  31  36  30  35  29  34 ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   2,  3;
   5,  4,  7;
  10,  8,  9, 13;
  17, 14,  6, 16, 21;
  26, 22, 11, 12, 25, 31;
  ...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i > j:
       result=i*i-(j%2)*i+2-int((j+2)/2)
    else:
       result=j*j-((i%2)+1)*j + int((i+3)/2)

Formula

As a table:
T(n,k) = n*n - (k mod 2)*n + 2 - floor((k+2)/2), if n>k;
T(n,k) = k*k - ((n mod 2)+1)*k + floor((n+3)/2), if n<=k.
As a linear sequence:
a(n) = i*i - (j mod 2)*i + 2 - floor((j+2)/2), if i>j;
a(n) = j*j - ((i mod 2)+1)*j + floor((i+3)/2), if i<=j; where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2).

A242412 a(n) = (2*n-1)^2 + 14.

Original entry on oeis.org

15, 23, 39, 63, 95, 135, 183, 239, 303, 375, 455, 543, 639, 743, 855, 975, 1103, 1239, 1383, 1535, 1695, 1863, 2039, 2223, 2415, 2615, 2823, 3039, 3263, 3495, 3735, 3983, 4239, 4503, 4775, 5055, 5343, 5639, 5943, 6255, 6575, 6903, 7239, 7583, 7935, 8295, 8663, 9039, 9423, 9815
Offset: 1

Views

Author

Aaron David Fairbanks, May 13 2014

Keywords

Comments

The previous definition was "a(n) = normalized inverse radius of the inscribed circle that is tangent to the left circle of the symmetric arbelos and the n-th and (n-1)-st circles in the Pappus chain".
See links section for image of these circles, via Wolfram MathWorld (there an asymmetric arbelos is shown).
The Rothman-Fukagawa article has another picture of the circles, based on a Japanese 1788 sangaku problem. - N. J. A. Sloane, Jan 02 2020

Examples

			For n = 1, the radius of the outermost circle divided by the radius of a circle drawn tangent to all three of the initial inner circle, the opposite inner circle (the 0th circle in the chain), and the 1st circle in the chain is 15.
For n = 2, the radius of the outermost circle divided by the radius of a circle drawn tangent to all three of the initial inner circle, the 1st circle in the chain, and the 2nd circle in the chain is 23.
		

Crossrefs

Programs

Formula

a(n) = 4*n^2 - 4*n + 15.
From Colin Barker, May 14 2014: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -x*(15*x^2 - 22*x + 15)/(x-1)^3. (End)
From Descartes three circle theorem:
a(n) = 2 + c(n) + c(n-1) + 2*sqrt(2*(c(n) + c(n-1)) + c(n)*c(n-1)), with c(n) = A059100(n) = n^2 + 2, n >= 1, which produces 4*n^2 - 4*n + 15. - Wolfdieter Lang, Jul 01 2015
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(4*x^2 + 15) - 15.
a(n) = A060747(n)^2 + 14. (End)

Extensions

More terms from Wesley Ivan Hurt, May 13 2014
More terms and links from Robert G. Wilson v, May 13 2014
Edited: Name reformulated (with consent of the author). - Wolfdieter Lang, Jul 01 2015
Edited by N. J. A. Sloane, Jan 02 2020, simplifying the definition and adding a reference to the fact that this sequence arose in a sangaku problem from 1788 in a temple in Tokyo Prefecture.

A247278 Least integer k > 0 such that k*n - prime(k) is a square.

Original entry on oeis.org

1, 1, 4, 29, 1, 3, 4, 43, 3, 1, 5, 37, 2, 5, 9, 19, 1, 267, 22, 23, 4, 3, 43, 57, 2, 1, 46, 19, 20, 5, 4, 23, 440, 3, 5, 162, 1, 7, 20, 499, 2, 74, 4, 128, 29, 9, 927, 215, 156, 1, 96, 91, 7, 1058, 73, 162, 3, 763, 5
Offset: 2

Views

Author

Zhi-Wei Sun, Sep 27 2014

Keywords

Comments

Conjecture: a(n) exists for any n > 1.
Note that k*n - prime(k) < 0 if k > e^(n + 1).

Examples

			a(5) = 29 since 29 * 5 - prime(29) = 145 - 109 = 6^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_] := IntegerQ[Sqrt[n]]
    Do[k = 1; Label[aa]; If[SQ[k * n - Prime[k]], Print[n, " ", k]; Goto[bb]]; k = k + 1; Goto[aa]; Label[bb]; Continue,{n, 2, 60}]

Formula

a(A059100(n)) = 1. - Michel Marcus, Sep 28 2014

A338432 Triangle read by rows: T(n, k) = (n - k + 1)^2 + 2*k^2, for n >= 1, and k = 1, 2, ..., n.

Original entry on oeis.org

3, 6, 9, 11, 12, 19, 18, 17, 22, 33, 27, 24, 27, 36, 51, 38, 33, 34, 41, 54, 73, 51, 44, 43, 48, 59, 76, 99, 66, 57, 54, 57, 66, 81, 102, 129, 83, 72, 67, 68, 75, 88, 107, 132, 163, 102, 89, 82, 81, 86, 97, 114, 137, 166, 201
Offset: 1

Views

Author

Wolfdieter Lang, Dec 09 2020

Keywords

Comments

This triangle is obtained from the array A(m, k) = m^2 + 2*k^2, for k and m >= 1, read by upwards antidiagonals. This array A is of interest for representing numbers as a sum of three non-vanishing squares with two squares coinciding.
For the numbers represented this way, see A154777. To find the actual values for m and k (taken positive), given a representable number from A154777, one can also use the number triangle T(n, k) = A(n-k+1, k).
To find the number of representations of value N (from A154777), it is sufficient to consider the rows n >= 1 not exceeding n_{max} = Floor(N, Min), where the sequence Min gives the minima of the numbers in each row: Min = {min(n)}_{n>=1} with min(n) = min(T(n, 1), T(n, 2), ..., T(n, n)) and Floor(N, Min) is the greatest member of Min not exceeding N.
Conjecture: min(n) = T(n, ceiling(n/3)), n >= 1. This is the sequence (n+1)^2 - ceiling(n/3)*(2*(n+1) - 3*ceiling(n/3)) = A071619(n+1) = ceiling((2/3)*(n+1)^2) = (n+1)^2 - floor((1/3)*(n+1)^2) = 3, 6, 11, 17, 24, 33, 43, .... (Proof of these identities by considering the three n (mod 3) cases.)
For the multiplicities of the representable values A154777(n), see A339047.
The author met this representation problem in connection with special triples of integer curvatures in the Descartes-Steiner five circle problem.

Examples

			The triangle T(n, k) begins:
n \ k  1   2   3   4   5   6   7   8   9  10  11  12 ...
1:     3
2:     6   9
3:    11  12  19
4:    18  17  22  33
5:    27  24  27  36  51
6:    38  33  34  41  54  73
7:    51  44  43  48  59  76  99
8:    66  57  54  57  66  81 102 129
9:    83  72  67  68  75  88 107 132 163
10:  102  89  82  81  86  97 114 137 166 201
11:  123 108  99  96  99 108 123 144 171 204 243
12:  146 129 118 113 114 121 134 153 178 209 246 289
...
----------------------------------------------------
T(5, 1) = 5^2 + 2*1^2 = 27 = T(5, 3) = 3^2 + 2*3^2. A338433(11) = 2 for A154777(11) = 27.
T(4, 4) = 1^2 + 2*4^2 = 33 = T(6, 2) = 5^2 + 2*2^2. A338433(12) = 2 for A154777(12) = 33.
T(5, 5) = 1^2 + 2*5^2 = 51 = T(7, 1) = 7^2 + 2*1^2. A338433(20) = 2 for A154777(20) = 51.
T(7, 7) = 1^1 - 2*7^2 = 99 = T(11, 3) = 9^2 + 2*3^2 = 99 = T(11, 5) = 7^2 + 2*5^2. A338433(39) = 3 for A154777(39) = 99.
The first multiplicity 4 appears for 297.
		

Crossrefs

Cf. Columns k = 1..3: A059100, A189833, A241848.
Cf. Diagonals m = 1..4: A058331, A255843, A339048, A255847.

Formula

T(n, k) = A(n - k + 1, k), with the array A(m, k) = m^2 + 2*k^2, for n >= 1 and k = 1, 2, ..., n, and 0 otherwise.
G.f. of T and A column k (offset 0): G(k, x) = (1 + x + 2*(1 - x)^2*k^2)/(1-x)^3, for k >= 1.
G.f. of T diagonal m (A row m) (offset 0): D(m, x) = ((2*(1+x) + (1-x)^2*m^2)/(1-x)^3), for m >= 1.
G.f. of row polynomials in x (that is, g.f. of the triangle): G(z,x) = (3 - 3*z + (2 - 6*x + x^2)*z^2 + (2 + x)*x*z^3)*x*z / ((1 - z)*(1 - x*z))^3.

A379351 a(n) is the greatest prime factor of n^2 + 2.

Original entry on oeis.org

2, 3, 3, 11, 3, 3, 19, 17, 11, 83, 17, 41, 73, 19, 11, 227, 43, 97, 163, 11, 67, 443, 3, 59, 17, 19, 113, 43, 131, 281, 41, 107, 19, 1091, 193, 409, 59, 457, 241, 1523, 89, 17, 883, 617, 19, 2027, 353, 67, 1153, 89, 139, 137, 41, 937, 1459, 1009, 523, 3251, 17, 43, 1801
Offset: 0

Views

Author

Andrew Howroyd, Dec 22 2024

Keywords

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1,1]]&/@(Range[0,60]^2+2) (* Harvey P. Dale, Dec 31 2024 *)
  • PARI
    a(n) = {vecmax(factor(n^2 + 2)[,1])}

Formula

a(n) = A006530(A059100(n)).

A171746 Let f(n) = n + floor(sqrt(n)). Then a(n) is the smallest number of iterations of f on n such that a perfect square is obtained.

Original entry on oeis.org

3, 2, 1, 5, 2, 4, 1, 3, 7, 2, 4, 6, 1, 3, 5, 9, 2, 4, 6, 8, 1, 3, 5, 7, 11, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 13, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 15, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 17, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 19, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 3, 5
Offset: 1

Views

Author

Neven Juric (neven.juric(AT)apis-it.hr), Oct 07 2010

Keywords

Comments

Iterate A028392, starting with n: a(n) is the number of steps until a square will be reached. - Reinhard Zumkeller, Feb 23 2012

Examples

			f(9)=12, f(12)=15, f(15)=18, f(18)=22, f(22)=26, f(26)=31, f(31)=36. The first square number in this sequence 12,15,18,22,26,31,36 is on the seventh place and therefore a(9)=7.
		

References

  • Matematicko-fizicki list 1/144, problem 2-2, page 29, (1985-1986).

Crossrefs

Programs

  • Haskell
    a171746 = (+ 1) . length . takeWhile (== 0) .
                               map a010052 . tail . iterate a028392
    -- Reinhard Zumkeller, Feb 23 2012, Oct 14 2010
    
  • Mathematica
    f[n_] := Length@ NestWhileList[ # + Floor@Sqrt@# &, n, ! IntegerQ@Sqrt@# || # == n &] - 1; Array[f, 93] (* Robert G. Wilson v, Oct 08 2010 *)
  • PARI
    f(n) = n + sqrtint(n); \\ A028392
    a(n) = my(k=1); while (!issquare(n=f(n)), k++); k; \\ Michel Marcus, Nov 06 2022

Formula

From Robert G. Wilson v, Oct 08 2010: (Start)
a(k)=1 for A002061(n): n^2 - n + 1 for n>1;
a(k)=2 for A002522(n): n^2 + 1 for n>1;
a(k)=3 for A014206(n): n^2 + n + 2 for n>1;
a(k)=4 for A059100(n): n^2 + 2 for n>1;
a(k)=5 for A027688(n): n^2 + n + 3 for n>2;
a(k)=6 for A117950(n): n^2 + 3 for n>2;
a(k)=7 for A027689(n): n^2 + n + 4 for n>4;
a(k)=8 for A087475(n): n^2 + 4 for n>3;
a(k)=9 for A027690(n): n^2 + n + 5 for n>4; ... (End)
a(n^2) = 2*n + 1: a(A000290(n)) = A005408(n). - Reinhard Zumkeller, Oct 14 2010

A197985 a(n) = round((n+1/n)^2).

Original entry on oeis.org

4, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027
Offset: 1

Views

Author

Vincenzo Librandi, Oct 20 2011

Keywords

Comments

Shifted variant of A102305. - R. J. Mathar, Oct 20 2011

Crossrefs

Programs

  • Magma
    [Round((n+1/n)^2): n in [1..60]];
    
  • Mathematica
    Table[Floor[(n+1/n)^2+1/2],{n,50}] (* Harvey P. Dale, Aug 12 2012 *)
    Join[{4}, 2+Range[2,50]^2] (* G. C. Greubel, Feb 04 2024 *)
  • SageMath
    [4]+[n^2+2 for n in range(2,51)] # G. C. Greubel, Feb 04 2024

Formula

a(n) = n^2 + 2, n > 1.
a(n) = a(n-1) + 2*n - 1, n > 2.
From G. C. Greubel, Feb 04 2024: (Start)
G.f.: x*(4 - 6*x + 5*x^2 - x^3)/(1 - x)^3.
E.g.f.: -2 + x + (2 + x + x^2)*exp(x). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4. - Chai Wah Wu, May 09 2024

A234305 Irregular triangle read by rows. Theoretical distribution of electrons based on the Janet's sequence A167268.

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 5, 2, 2, 6, 2, 2, 6, 1, 2, 2, 6, 2, 2, 2, 6, 2, 1, 2, 2, 6, 2, 2, 2, 2, 6, 2, 3, 2, 2, 6, 2, 4, 2, 2, 6, 2, 5, 2, 2, 6, 2, 6, 2, 2, 6, 2, 6, 1, 2, 2, 6, 2, 6, 2, 2, 2, 6, 2, 6, 2, 1, 2, 2, 6, 2, 6, 2, 2, 2, 2, 6, 2, 6, 2, 3, 2, 2, 6, 2, 6, 2, 4
Offset: 1

Views

Author

Paul Curtz, Jan 02 2014

Keywords

Comments

a(n) is not A173642, a compact Bohr-Stoner model (1924), modified by Charles Janet in 1930. The good distribution is A168208.
Only sequences N16(n) in A234398 are used:
N16(1)= 1 followed by 2's = A040000,
N16(2)= 1, 2, 3, 4, 5, followed by 6's = A101272,
N16(3)= 1 to 9, followed by 10's,
N16(4)= 1 to 13, followed by 14's, etc.
The distribution by rows are in the example.
The N16(n)'s are respectively on columns (hence triangle T)
1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, A002620(n+2)
3, 5, 8, 11, 15, 19, 24, 29, 35, A024206(n+2)
7, 10, 14, 18, 23, 28, 34, A014616(n+3)
13, 17, 22, 27, 33, A004116(n+4)
21, 26, 32,
31, etc.
See A163255.
Antidiagonals give the natural numbers A000027, like rows sums in the example.
A033638=1, 1, 2, 3, 5, 7,... is upon the triangle T.

Examples

			1,      H
2,       He
2, 1,    Li
2, 2,    Be
2, 2, 1,
2, 2, 2,
2, 2, 3,
2, 2, 4,
2, 2, 5,
2, 2, 6,
2, 2, 6, 1,
2, 2, 6, 2,
2, 2, 6, 2, 1,
2, 2, 6, 2, 2,
2, 2, 6, 2, 3,
2, 2, 6, 2, 4,
2, 2, 6, 2, 5,
2, 2, 6, 2, 6,
2, 2, 6, 2, 6, 1,
2, 2, 6, 2, 6, 2,
2, 2, 6, 2, 6, 2, 1,
2, 2, 6, 2, 6, 2, 2,
2, 2, 6, 2, 6, 2, 3, etc.
		

Crossrefs

Cf. A002061, A002522 (or A160457), A014206, A059100, diagonals of the triangle T. A004526.

A243618 Table read by antidiagonals: T(n,k) is the curvature of a circle in a nested Pappus chain (see Comments for details).

Original entry on oeis.org

2, 6, 3, 12, 7, 6, 20, 13, 10, 11, 30, 21, 16, 15, 18, 42, 31, 24, 21, 22, 27, 56, 43, 34, 29, 28, 31, 38, 72, 57, 46, 39, 36, 37, 42, 51, 90, 73, 60, 51, 46, 45, 48, 55, 66, 110, 91, 76, 65, 58, 55, 56, 61, 70, 83, 132
Offset: 0

Views

Author

Kival Ngaokrajang, Jun 07 2014

Keywords

Comments

Refer to sequential curvatures from Wikipedia. For any integer k > 0, there exists an Apollonian gasket defined by the following curvatures:
(-k, k+1, k*(k+1), k*(k+1)+1).
For example, the gaskets defined by (-1, 2, 2, 3), (-2, 3, 6, 7), (-3, 4, 12, 13), ..., all follow this pattern (all curvatures are integral). Because every interior circle that is defined by k+1 can become the bounding circle (defined by -k) in another gasket, these gaskets can be nested. When one considers only circles that contact both circles -k and k+1, the pattern will be nested Pappus chains. T(n,k) is the curvature when n = 0 is the circle at the center and n > 0 is in the clockwise direction, k >= 1 for each nested iteration. See illustration in links.

Examples

			Table begins:
n/k   1   2   3    4    5    6    7  ...
0     2   6  12   20   30   42   56  ...
1     3   7  13   21   31   43   57  ...
2     6  10  16   24   34   46   60  ...
3    11  15  21   29   39   51   65  ...
4    18  22  28   36   46   58   72  ...
5    27  31  37   45   55   67   80  ...
6    38  42  48   56   66   78   91  ...
7    51  55  61   68   79   91  105  ...
8    66  70  76   83   94  106  120  ...
9    83  87  93  101  111  123  137  ...
..   ..  ..  ..  ...  ...  ...  ...
		

Crossrefs

Cf. Column 1 = A059100(n), column 2 = A114949(n), column 3 = A241748(n), column 4 = A241850(n), column 5 = A114964(n), row 0 = A002378(k), row 1 = A002061(k+1).
Previous Showing 41-50 of 75 results. Next