A164900
a(2n) = 4*n*(n+1) + 3; a(2n+1) = 2*n*(n+2) + 3.
Original entry on oeis.org
3, 3, 11, 9, 27, 19, 51, 33, 83, 51, 123, 73, 171, 99, 227, 129, 291, 163, 363, 201, 443, 243, 531, 289, 627, 339, 731, 393, 843, 451, 963, 513, 1091, 579, 1227, 649, 1371, 723, 1523, 801, 1683, 883, 1851, 969, 2027, 1059, 2211, 1153
Offset: 0
-
[((-1)^n+3)*(n^2+2*n+3)/4: n in [0..50]]; // Vincenzo Librandi, Aug 07 2011
-
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {3, 3, 11, 9, 27, 19}, 50] (* Amiram Eldar, Aug 09 2022 *)
-
vector(100,n,n--;(1/4)*((-1)^n+3)*(n^2+2*n+3)) \\ Derek Orr, Jun 27 2015
A213921
Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places clockwise. Table T(n,k) read by antidiagonals.
Original entry on oeis.org
1, 2, 3, 5, 4, 7, 10, 8, 9, 13, 17, 14, 6, 16, 21, 26, 22, 11, 12, 25, 31, 37, 32, 18, 15, 20, 36, 43, 50, 44, 27, 23, 24, 30, 49, 57, 65, 58, 38, 33, 19, 35, 42, 64, 73, 82, 74, 51, 45, 28, 29, 48, 56, 81, 91, 101, 92, 66, 59, 39, 34, 41, 63, 72, 100, 111
Offset: 1
The start of the sequence as table:
1 2 5 10 17 26 ...
3 4 8 14 22 32 ...
7 9 6 11 18 27 ...
13 16 12 15 23 33 ...
21 25 20 24 19 28 ...
31 36 30 35 29 34 ...
...
The start of the sequence as triangle array read by rows:
1;
2, 3;
5, 4, 7;
10, 8, 9, 13;
17, 14, 6, 16, 21;
26, 22, 11, 12, 25, 31;
...
Cf.
A060734,
A060736; table T(n,k) contains: in rows
A002522,
A014206,
A059100,
A027688,
A117950,
A027689,
A087475,
A027690,
A117951,
A027691,
A114949,
A027692,
A117619; in columns
A002061,
A000290,
A002378,
A005563,
A028387,
A008865,
A028552,
A028872,
A014209,
A028347,
A028875.
A242412
a(n) = (2*n-1)^2 + 14.
Original entry on oeis.org
15, 23, 39, 63, 95, 135, 183, 239, 303, 375, 455, 543, 639, 743, 855, 975, 1103, 1239, 1383, 1535, 1695, 1863, 2039, 2223, 2415, 2615, 2823, 3039, 3263, 3495, 3735, 3983, 4239, 4503, 4775, 5055, 5343, 5639, 5943, 6255, 6575, 6903, 7239, 7583, 7935, 8295, 8663, 9039, 9423, 9815
Offset: 1
For n = 1, the radius of the outermost circle divided by the radius of a circle drawn tangent to all three of the initial inner circle, the opposite inner circle (the 0th circle in the chain), and the 1st circle in the chain is 15.
For n = 2, the radius of the outermost circle divided by the radius of a circle drawn tangent to all three of the initial inner circle, the 1st circle in the chain, and the 2nd circle in the chain is 23.
- N. J. A. Sloane, Table of n, a(n) for n = 1..1000
- Brady Haran and Simon Pampena, Epic Circles, Numberphile video (2014).
- Tony Rothman and Hidetoshi Fukagawa, Japanese temple geometry, Scientific American, Vol. 278, No. 5, May 1998, pp. 85-91.
- Eric Weisstein's World of Mathematics, Image of inscribed circles (in red).
- Eric Weisstein's World of Mathematics, Pappus Chain.
- Wikipedia, Pappus chain.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[4*n^2 - 4*n + 15: n in [1..50]]; // Wesley Ivan Hurt, May 13 2014
-
A242412:=n->4*n^2 - 4*n + 15; seq(A242412(n), n=1..50); # Wesley Ivan Hurt, May 13 2014
-
Table[4 n^2 - 4 n + 15, {n, 50}] (* Wesley Ivan Hurt, May 13 2014 *)
LinearRecurrence[{3,-3,1},{15,23,39},50] (* Harvey P. Dale, Feb 22 2023 *)
-
a(n) = 4*n^2 - 4*n + 15 \\ Charles R Greathouse IV, May 14 2014
Edited: Name reformulated (with consent of the author). -
Wolfdieter Lang, Jul 01 2015
Edited by
N. J. A. Sloane, Jan 02 2020, simplifying the definition and adding a reference to the fact that this sequence arose in a sangaku problem from 1788 in a temple in Tokyo Prefecture.
A247278
Least integer k > 0 such that k*n - prime(k) is a square.
Original entry on oeis.org
1, 1, 4, 29, 1, 3, 4, 43, 3, 1, 5, 37, 2, 5, 9, 19, 1, 267, 22, 23, 4, 3, 43, 57, 2, 1, 46, 19, 20, 5, 4, 23, 440, 3, 5, 162, 1, 7, 20, 499, 2, 74, 4, 128, 29, 9, 927, 215, 156, 1, 96, 91, 7, 1058, 73, 162, 3, 763, 5
Offset: 2
a(5) = 29 since 29 * 5 - prime(29) = 145 - 109 = 6^2.
-
SQ[n_] := IntegerQ[Sqrt[n]]
Do[k = 1; Label[aa]; If[SQ[k * n - Prime[k]], Print[n, " ", k]; Goto[bb]]; k = k + 1; Goto[aa]; Label[bb]; Continue,{n, 2, 60}]
A338432
Triangle read by rows: T(n, k) = (n - k + 1)^2 + 2*k^2, for n >= 1, and k = 1, 2, ..., n.
Original entry on oeis.org
3, 6, 9, 11, 12, 19, 18, 17, 22, 33, 27, 24, 27, 36, 51, 38, 33, 34, 41, 54, 73, 51, 44, 43, 48, 59, 76, 99, 66, 57, 54, 57, 66, 81, 102, 129, 83, 72, 67, 68, 75, 88, 107, 132, 163, 102, 89, 82, 81, 86, 97, 114, 137, 166, 201
Offset: 1
The triangle T(n, k) begins:
n \ k 1 2 3 4 5 6 7 8 9 10 11 12 ...
1: 3
2: 6 9
3: 11 12 19
4: 18 17 22 33
5: 27 24 27 36 51
6: 38 33 34 41 54 73
7: 51 44 43 48 59 76 99
8: 66 57 54 57 66 81 102 129
9: 83 72 67 68 75 88 107 132 163
10: 102 89 82 81 86 97 114 137 166 201
11: 123 108 99 96 99 108 123 144 171 204 243
12: 146 129 118 113 114 121 134 153 178 209 246 289
...
----------------------------------------------------
T(5, 1) = 5^2 + 2*1^2 = 27 = T(5, 3) = 3^2 + 2*3^2. A338433(11) = 2 for A154777(11) = 27.
T(4, 4) = 1^2 + 2*4^2 = 33 = T(6, 2) = 5^2 + 2*2^2. A338433(12) = 2 for A154777(12) = 33.
T(5, 5) = 1^2 + 2*5^2 = 51 = T(7, 1) = 7^2 + 2*1^2. A338433(20) = 2 for A154777(20) = 51.
T(7, 7) = 1^1 - 2*7^2 = 99 = T(11, 3) = 9^2 + 2*3^2 = 99 = T(11, 5) = 7^2 + 2*5^2. A338433(39) = 3 for A154777(39) = 99.
The first multiplicity 4 appears for 297.
A379351
a(n) is the greatest prime factor of n^2 + 2.
Original entry on oeis.org
2, 3, 3, 11, 3, 3, 19, 17, 11, 83, 17, 41, 73, 19, 11, 227, 43, 97, 163, 11, 67, 443, 3, 59, 17, 19, 113, 43, 131, 281, 41, 107, 19, 1091, 193, 409, 59, 457, 241, 1523, 89, 17, 883, 617, 19, 2027, 353, 67, 1153, 89, 139, 137, 41, 937, 1459, 1009, 523, 3251, 17, 43, 1801
Offset: 0
-
FactorInteger[#][[-1,1]]&/@(Range[0,60]^2+2) (* Harvey P. Dale, Dec 31 2024 *)
-
a(n) = {vecmax(factor(n^2 + 2)[,1])}
A171746
Let f(n) = n + floor(sqrt(n)). Then a(n) is the smallest number of iterations of f on n such that a perfect square is obtained.
Original entry on oeis.org
3, 2, 1, 5, 2, 4, 1, 3, 7, 2, 4, 6, 1, 3, 5, 9, 2, 4, 6, 8, 1, 3, 5, 7, 11, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 13, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 15, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 17, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 19, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 3, 5
Offset: 1
Neven Juric (neven.juric(AT)apis-it.hr), Oct 07 2010
f(9)=12, f(12)=15, f(15)=18, f(18)=22, f(22)=26, f(26)=31, f(31)=36. The first square number in this sequence 12,15,18,22,26,31,36 is on the seventh place and therefore a(9)=7.
- Matematicko-fizicki list 1/144, problem 2-2, page 29, (1985-1986).
-
a171746 = (+ 1) . length . takeWhile (== 0) .
map a010052 . tail . iterate a028392
-- Reinhard Zumkeller, Feb 23 2012, Oct 14 2010
-
f[n_] := Length@ NestWhileList[ # + Floor@Sqrt@# &, n, ! IntegerQ@Sqrt@# || # == n &] - 1; Array[f, 93] (* Robert G. Wilson v, Oct 08 2010 *)
-
f(n) = n + sqrtint(n); \\ A028392
a(n) = my(k=1); while (!issquare(n=f(n)), k++); k; \\ Michel Marcus, Nov 06 2022
A197985
a(n) = round((n+1/n)^2).
Original entry on oeis.org
4, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027
Offset: 1
-
[Round((n+1/n)^2): n in [1..60]];
-
Table[Floor[(n+1/n)^2+1/2],{n,50}] (* Harvey P. Dale, Aug 12 2012 *)
Join[{4}, 2+Range[2,50]^2] (* G. C. Greubel, Feb 04 2024 *)
-
[4]+[n^2+2 for n in range(2,51)] # G. C. Greubel, Feb 04 2024
A234305
Irregular triangle read by rows. Theoretical distribution of electrons based on the Janet's sequence A167268.
Original entry on oeis.org
1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 5, 2, 2, 6, 2, 2, 6, 1, 2, 2, 6, 2, 2, 2, 6, 2, 1, 2, 2, 6, 2, 2, 2, 2, 6, 2, 3, 2, 2, 6, 2, 4, 2, 2, 6, 2, 5, 2, 2, 6, 2, 6, 2, 2, 6, 2, 6, 1, 2, 2, 6, 2, 6, 2, 2, 2, 6, 2, 6, 2, 1, 2, 2, 6, 2, 6, 2, 2, 2, 2, 6, 2, 6, 2, 3, 2, 2, 6, 2, 6, 2, 4
Offset: 1
1, H
2, He
2, 1, Li
2, 2, Be
2, 2, 1,
2, 2, 2,
2, 2, 3,
2, 2, 4,
2, 2, 5,
2, 2, 6,
2, 2, 6, 1,
2, 2, 6, 2,
2, 2, 6, 2, 1,
2, 2, 6, 2, 2,
2, 2, 6, 2, 3,
2, 2, 6, 2, 4,
2, 2, 6, 2, 5,
2, 2, 6, 2, 6,
2, 2, 6, 2, 6, 1,
2, 2, 6, 2, 6, 2,
2, 2, 6, 2, 6, 2, 1,
2, 2, 6, 2, 6, 2, 2,
2, 2, 6, 2, 6, 2, 3, etc.
A243618
Table read by antidiagonals: T(n,k) is the curvature of a circle in a nested Pappus chain (see Comments for details).
Original entry on oeis.org
2, 6, 3, 12, 7, 6, 20, 13, 10, 11, 30, 21, 16, 15, 18, 42, 31, 24, 21, 22, 27, 56, 43, 34, 29, 28, 31, 38, 72, 57, 46, 39, 36, 37, 42, 51, 90, 73, 60, 51, 46, 45, 48, 55, 66, 110, 91, 76, 65, 58, 55, 56, 61, 70, 83, 132
Offset: 0
Table begins:
n/k 1 2 3 4 5 6 7 ...
0 2 6 12 20 30 42 56 ...
1 3 7 13 21 31 43 57 ...
2 6 10 16 24 34 46 60 ...
3 11 15 21 29 39 51 65 ...
4 18 22 28 36 46 58 72 ...
5 27 31 37 45 55 67 80 ...
6 38 42 48 56 66 78 91 ...
7 51 55 61 68 79 91 105 ...
8 66 70 76 83 94 106 120 ...
9 83 87 93 101 111 123 137 ...
.. .. .. .. ... ... ... ...
Comments