A243631
Square array of Narayana polynomials N_n evaluated at the integers, A(n,k) = N_n(k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 11, 14, 1, 1, 1, 5, 19, 45, 42, 1, 1, 1, 6, 29, 100, 197, 132, 1, 1, 1, 7, 41, 185, 562, 903, 429, 1, 1, 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1, 1, 1, 9, 71, 469, 2426, 8925, 20071, 20793, 4862, 1
Offset: 0
[0] [1] [2] [3] [4] [5] [6] [7]
[0] 1, 1, 1, 1, 1, 1, 1, 1
[1] 1, 1, 1, 1, 1, 1, 1, 1
[2] 1, 2, 3, 4, 5, 6, 7, 8 .. A000027
[3] 1, 5, 11, 19, 29, 41, 55, 71 .. A028387
[4] 1, 14, 45, 100, 185, 306, 469, 680 .. A090197
[5] 1, 42, 197, 562, 1257, 2426, 4237, 6882 .. A090198
[6] 1, 132, 903, 3304, 8925, 20076, 39907, 72528 .. A090199
[7] 1, 429, 4279, 20071, 65445, 171481, 387739, 788019 .. A090200
A000108, A001003, A007564, A059231, A078009, A078018, A081178
First few rows of the antidiagonal triangle are:
1;
1, 1;
1, 1, 1;
1, 1, 2, 1;
1, 1, 3, 5, 1;
1, 1, 4, 11, 14, 1;
1, 1, 5, 19, 45, 42, 1; - _G. C. Greubel_, Feb 16 2021
-
A243631:= func< n,k | n eq 0 select 1 else (&+[ Binomial(n,j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
[A243631(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
-
# Computed with Narayana polynomials:
N := (n,k) -> binomial(n,k)^2*(n-k)/(n*(k+1));
A := (n,x) -> `if`(n=0, 1, add(N(n,k)*x^k, k=0..n-1));
seq(print(seq(A(n,k), k=0..7)), n=0..7);
# Computed by recurrence:
Prec := proc(n,N,k) option remember; local A,B,C,h;
if n = 0 then 1 elif n = 1 then 1+N+(1-N)*(1-2*k)
else h := 2*N-n; A := n*h*(1+N-n); C := n*(h+2)*(N-n);
B := (1+h-n)*(n*(1-2*k)*(1+h)+2*k*N*(1+N));
(B*Prec(n-1,N,k) - C*Prec(n-2,N,k))/A fi end:
T := (n, k) -> Prec(n,n,k)/(n+1);
seq(print(seq(T(n,k), k=0..7)), n=0..7);
# Array by o.g.f. of columns:
gf := n -> 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1):
for n from 0 to 11 do PolynomialTools:-CoefficientList(convert( series(gf(n), x, 12), polynom), x) od; # Peter Luschny, Nov 17 2014
# Row n by linear recurrence:
rec := n -> a(x) = add((-1)^(k+1)*binomial(n,k)*a(x-k), k=1..n):
ini := n -> seq(a(k) = A(n,k), k=0..n): # for A see above
row := n -> gfun:-rectoproc({rec(n),ini(n)},a(x),list):
for n from 1 to 7 do row(n)(8) od; # Peter Luschny, Nov 19 2014
-
MatrixForm[Table[JacobiP[n,1,-2*n-1,1-2*x]/(n+1), {n,0,7},{x,0,7}]]
Table[Hypergeometric2F1[1-k, -k, 2, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
-
def NarayanaPolynomial():
R = PolynomialRing(ZZ, 'x')
D = [1]
h = 0
b = True
while True:
if b :
for k in range(h, 0, -1):
D[k] += x*D[k-1]
h += 1
yield R(expand(D[0]))
D.append(0)
else :
for k in range(0, h, 1):
D[k] += D[k+1]
b = not b
NP = NarayanaPolynomial()
for _ in range(8):
p = next(NP)
[p(k) for k in range(8)]
-
def A243631(n,k): return 1 if n==0 else sum( binomial(n,j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
flatten([[A243631(k,n-k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
A059450
Triangle read by rows: T(n,k) = Sum_{j=0..k-1} T(n,j) + Sum_{j=1..n-k} T(n-j,k), with T(0,0)=1 and T(n,k) = 0 for k > n.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 4, 8, 17, 29, 8, 20, 50, 107, 185, 16, 48, 136, 336, 721, 1257, 32, 112, 352, 968, 2370, 5091, 8925, 64, 256, 880, 2640, 7116, 17304, 37185, 65445, 128, 576, 2144, 6928, 20168, 53596, 129650, 278635, 491825, 256, 1280, 5120, 17664, 54880
Offset: 0
1;
1, 1;
2, 3, 5;
4, 8, 17, 29;
8, 20, 50, 107, 185;
- Wen-jin Woan, Diagonal lattice paths, Congressus Numerantium, 151, 2001, 173-178.
-
l := 1:a[0,0] := 1:b[l] := 1:T := (n,k)->sum(a[n,j],j=0..k-1)+sum(a[n-j,k],j=1..n-k): for n from 1 to 15 do for k from 0 to n do a[n,k] := T(n,k):l := l+1:b[l] := a[n,k]: od:od:seq(b[w],w=1..l); # Sascha Kurz
# alternative
A059450 := proc(n,k)
option remember;
local j ;
if k =0 and n= 0 then
1;
elif k > n or k < 0 then
0 ;
else
add( procname(n,j),j=0..k-1) + add(procname(n-j,k),j=1..n-k) ;
end if;
end proc:
seq(seq(A059450(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Mar 25 2024
-
t[0, 0] = 1; t[n_, k_] /; k > n = 0; t[n_, k_] := t[n, k] = Sum[t[n, j], {j, 0, k-1}] + Sum[t[n-j, k], {j, 1, n-k}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
-
T(n,k)=if(k<0||k>n,0,polcoeff(polcoeff(2*(1-x)/((1-4*x+3*x*y)+sqrt((1-x*y)*(1-9*x*y)+x^2*O(x^n))),n),k)) /* Michael Somos, Mar 06 2004 */
-
T(n,k)=local(A,t);if(k<0||k>n,0,A=matrix(n+1,n+1);A[1,1]=1;for(m=1,n,t=0;for(j=0,m,t+=(A[m+1,j+1]=t+sum(i=1,m-j,A[m-i+1,j+1]))));A[n+1,k+1]) /* Michael Somos, Mar 06 2004 */
-
T(n,k)=if(k<0||k>n,0,(n==0)+sum(j=0,k-1,T(n,j))+sum(j=1,n-k,T(n-j,k))) /* Michael Somos, Mar 06 2004 */
A082147
a(0)=1; for n >= 1, a(n) = Sum_{k=0..n} 8^k*N(n,k) where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).
Original entry on oeis.org
1, 1, 9, 89, 945, 10577, 123129, 1476841, 18130401, 226739489, 2878666857, 37006326777, 480750990993, 6301611631473, 83240669582937, 1106980509493641, 14808497812637121, 199138509770855489, 2690461489090104009
Offset: 0
-
a:=n->Sum([0..n],k->8^k*(1/n)*Binomial(n,k)*Binomial(n,k+1));;
Concatenation([1],List([1..18],n->a(n))); # Muniru A Asiru, Feb 10 2018
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1+7*x-Sqrt(49*x^2-18*x+1))/(16*x))) // G. C. Greubel, Feb 05 2018
-
A082147_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := a[w-1]+8*add(a[j]*a[w-j-1],j=1..w-1) od;
convert(a, list) end: A082147_list(18); # Peter Luschny, May 19 2011
-
Table[SeriesCoefficient[(1+7*x-Sqrt[49*x^2-18*x+1])/(16*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
f[n_] := Sum[ 8^k*Binomial[n, k]*Binomial[n, k + 1]/n, {k, 0, n}]; f[0] = 1; Array[f, 21, 0] (* Robert G. Wilson v, Feb 24 2018 *)
a[n_] := Hypergeometric2F1[1 - n, -n, 2, 8];
Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
-
a(n)=if(n<1,1,sum(k=0,n,8^k/n*binomial(n,k)*binomial(n,k+1)))
A131198
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,1,0,1,0,1,0,...] DELTA [0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 3, 1, 0;
1, 6, 6, 1, 0;
1, 10, 20, 10, 1, 0;
1, 15, 50, 50, 15, 1, 0;
1, 21, 105, 175, 105, 21, 1, 0;
1, 28, 196, 490, 490, 196, 28, 1, 0; ...
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009), Article 09.7.6.
- Paul Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011), Article 11.4.5.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- FindStat - Combinatorial Statistic Finder, The number of peaks of a Dyck path., The number of double rises of a Dyck path., The number of valleys of a Dyck path., The number of left oriented leafs except the first one of a binary tree., The number of left tunnels of a Dyck path.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
-
[[n le 0 select 1 else (n-k)*Binomial(n,k)^2/(n*(k+1)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
-
T := (n,k) -> `if`(n=0, 0^n, binomial(n,k)^2*(n-k)/(n*(k+1)));
seq(print(seq(T(n,k), k=0..n)), n=0..5); # Peter Luschny, Jun 08 2014
R := n -> simplify(hypergeom([1 - n, -n], [2], x)):
Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
-
Table[If[n == 0, 1, (n-k)*Binomial[n,k]^2/(n*(k+1))], {n,0,10}, {k,0,n}] //Flatten (* G. C. Greubel, Feb 06 2018 *)
-
for(n=0,10, for(k=0,n, print1(if(n==0,1, (n-k)*binomial(n,k)^2/(n* (k+1))), ", "))) \\ G. C. Greubel, Feb 06 2018
A082148
a(0)=1; for n >= 1, a(n) = Sum_{k=0..n} 10^k*N(n,k), where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).
Original entry on oeis.org
1, 1, 11, 131, 1661, 22101, 305151, 4335711, 63009881, 932449961, 14004694451, 212944033051, 3271618296661, 50711564152381, 792088104593511, 12454801769554551, 196991734871121201, 3131967533789345361, 50026642742943415131, 802406215117502069811
Offset: 0
-
I:=[1,11]; [1] cat [n le 2 select I[n] else (11*(2*n-1)*Self(n-1) - 81*(n-2)*Self(n-2))/(n+1): n in [1..30]]; // G. C. Greubel, Feb 10 2018
-
A082148_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w]:=a[w-1]+10*add(a[j]*a[w-j-1],j=1..w-1) od;
convert(a, list) end: A082148_list(17); # Peter Luschny, May 19 2011
-
Table[SeriesCoefficient[(1+9*x-Sqrt[81*x^2-22*x+1])/(20*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
a[n_] := Sum[10^k*1/n*Binomial[n, k]*Binomial[n, k + 1], {k, 0, n}];
a[0] = 1; Array[a, 20, 0] (* Robert G. Wilson v, Feb 10 2018 *)
a[n_] := Hypergeometric2F1[1 - n, -n, 2, 10];
Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
-
a(n)=if(n<1,1,sum(k=0,n,10^k/n*binomial(n,k)*binomial(n,k+1)))
A082173
a(0)=1; for n >= 1, a(n) = Sum_{k=0..n} 11^k*N(n,k) where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).
Original entry on oeis.org
1, 1, 12, 155, 2124, 30482, 453432, 6936799, 108507180, 1727970542, 27924685416, 456820603086, 7550600079672, 125905525750500, 2115511349837040, 35782547891727495, 608787760350045420, 10411451736723707990
Offset: 0
-
[1] cat [&+[11^k*Binomial(n, k)*Binomial(n, k+1)/n:k in [0..n]]:n in [1..18]]; // Marius A. Burtea, Jan 22 2020
-
A082173_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := a[w-1]+11*add(a[j]*a[w-j-1],j=1..w-1)od;
convert(a, list) end: A082173_list(17); # Peter Luschny, May 19 2011
-
Table[SeriesCoefficient[(1+10*x-Sqrt[100*x^2-24*x+1])/(22*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
a[n_] := Hypergeometric2F1[1 - n, -n, 2, 11];
Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
-
a(n)=if(n<1,1,sum(k=0,n,11^k/n*binomial(n,k)*binomial(n,k+1)))
-
def A082173_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+10*x-sqrt(100*x^2-24*x+1))/(22*x) ).list()
A082173_list(30) # G. C. Greubel, Jan 21 2024
A082181
a(0) = 1, for n>=1, a(n) = Sum_{k=0..n} 9^k*N(n,k), where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).
Original entry on oeis.org
1, 1, 10, 109, 1270, 15562, 198100, 2596645, 34825150, 475697854, 6595646860, 92590323058, 1313427716380, 18798095833012, 271118225915560, 3936516861402901, 57494017447915150, 844109420603623030
Offset: 0
-
[(&+[Binomial(n,k)*Binomial(n-1,k)*9^k/(k+1): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 23 2022
-
A082181_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := a[w-1]+9*add(a[j]*a[w-j-1],j=1..w-1) od;
convert(a, list) end: A082181_list(17); # Peter Luschny, May 19 2011
-
Table[SeriesCoefficient[(1+8*x-Sqrt[64*x^2-20*x+1])/(18*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
a[n_] := Hypergeometric2F1[1 - n, -n, 2, 9];
Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
-
a(n)=if(n<1,1,sum(k=0,n,9^k/n*binomial(n,k)*binomial(n,k+1)))
-
[sum(binomial(n,k)*binomial(n-1,k)*9^k/(k+1) for k in (0..n)) for n in (0..30)] # G. C. Greubel, May 23 2022
A127846
Series reversion of x/(1+5x+4x^2).
Original entry on oeis.org
0, 1, 5, 29, 185, 1257, 8925, 65445, 491825, 3768209, 29324405, 231153133, 1841801065, 14810069497, 120029657805, 979470140661, 8040831465825, 66361595715105, 550284185213925, 4582462506008253, 38306388126997785
Offset: 0
-
CoefficientList[Series[(1-5*x-Sqrt[1-10*x+9*x^2])/(8*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
-
A127846 = lambda n: hypergeometric([1-n, -n], [2], 4) if n>0 else 0
[Integer(A127846(n).n(100)) for n in (0..22)] # Peter Luschny, Sep 23 2014
A133336
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,1,1,1,1,1,...] DELTA [0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 5, 5, 1, 0, 14, 21, 9, 1, 0, 42, 84, 56, 14, 1, 0, 132, 330, 300, 120, 20, 1, 0, 429, 1287, 1485, 825, 225, 27, 1, 0, 1430, 5005, 7007, 5005, 1925, 385, 35, 1, 0, 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1, 0, 16796, 75582, 143208, 148512, 91728, 34398, 7644, 936, 54, 1, 0
Offset: 0
Triangle begins:
1;
1, 0;
2, 1, 0;
5, 5, 1, 0;
14, 21, 9, 1, 0;
42, 84, 56, 14, 1, 0;
132, 330, 300, 120, 20, 1, 0;
429, 1287, 1485, 825, 225, 27, 1, 0;
-
[[Binomial(n-1,k)*Binomial(2*n-k,n)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 05 2018
-
Table[Binomial[n-1,k]*Binomial[2*n-k,n]/(n+1), {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 05 2018 *)
-
for(n=0,10, for(k=0,n, print1(binomial(n-1,k)*binomial(2*n-k,n)/(n+1), ", "))) \\ G. C. Greubel, Feb 05 2018
A331516
Expansion of 1/(1 - 10*x + 9*x^2)^(3/2).
Original entry on oeis.org
1, 15, 174, 1850, 18855, 187425, 1832460, 17705700, 169569405, 1612842275, 15256106778, 143660483070, 1347716324227, 12603114069525, 117536416879320, 1093553079352200, 10153324144411065, 94098595671581175, 870667876141568070, 8044341506669534850
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 1/(1 - 10*x + 9*x^2)^(3/2))); // Marius A. Burtea, Jan 20 2020
-
[1/2*&+[3^(n-k+1)*k*Binomial(n+1, k)*Binomial(n+k+1,k):k in [1..n+1]]:n in [0..20]]; // Marius A. Burtea, Jan 20 2020
-
a[n_] := 1/2 * Sum[3^( n + 1 - k) * k * Binomial[n + 1, k] * Binomial[n + 1 + k, k], {k, 1, n+1}]; Array[a, 20, 0] (* Amiram Eldar, Jan 20 2020 *)
CoefficientList[Series[1/(1-10x+9x^2)^(3/2),{x,0,20}],x] (* Harvey P. Dale, Nov 04 2021 *)
-
my(N=20, x='x+O('x^N)); Vec(1/(1-10*x+9*x^2)^(3/2))
-
a(n) = sum(k=1, n+1, 3^(n+1-k)*k*binomial(n+1, k)*binomial(n+1+k, k))/2;
Comments