cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A079861 a(n) is the number of occurrences of 7's in the palindromic compositions of 2*n-1, or also, the number of occurrences of 8's in the palindromic compositions of 2*n.

Original entry on oeis.org

10, 22, 48, 104, 224, 480, 1024, 2176, 4608, 9728, 20480, 43008, 90112, 188416, 393216, 819200, 1703936, 3538944, 7340032, 15204352, 31457280, 65011712, 134217728, 276824064, 570425344, 1174405120, 2415919104, 4966055936
Offset: 8

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Jan 11 2003

Keywords

Comments

This sequence is part of a family of sequences, namely R(n,k), the number of k's in palindromic compositions of n. See also A057711, A001792, A078836, A079861, A079862. General formula: R(n,k) = 2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k) = 2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2*k.

Examples

			a(8)=10 since the palindromic compositions of 15 that contain a 7 are 7+1+7, 4+7+4, 1+3+7+3+1, 3+1+7+1+3, 2+2+7+2+2, 1+1+1+1+7+1+1+1+1, 1+1+2+7+2+1+1, 1+2+1+7+1+2+1 and 2+1+1+7+1+1+2, for a total of 10 7's.
		

Crossrefs

Programs

  • Magma
    [(2+n)*2^(n-8) : n in [8..40]]; // Vincenzo Librandi, Sep 22 2011
    
  • Mathematica
    Table[(2 + i)*2^(i - 8), {i, 8, 50}]
    LinearRecurrence[{4,-4},{10,22},50] (* Harvey P. Dale, Jun 04 2025 *)
  • PARI
    Vec(-2*x^8*(9*x-5)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Dec 16 2014

Formula

a(n) = (2+n)*2^(n-8).
a(n) = 2*A111297(n-6). - Colin Barker, Dec 16 2014
a(n) = 4*a(n-1) - 4*a(n-2). - Colin Barker, Dec 16 2014
G.f.: -2*x^8*(9*x-5) / (2*x-1)^2. - Colin Barker, Dec 16 2014
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=8} 1/a(n) = 1024*log(2) - 447047/630.
Sum_{n>=8} (-1)^n/a(n) = 261617/630 - 1024*log(3/2). (End)

A294361 E.g.f.: exp(Sum_{n>=1} sigma(n) * x^n).

Original entry on oeis.org

1, 1, 7, 43, 409, 3841, 50431, 648187, 10347793, 170363809, 3200390551, 62855417131, 1371594161257, 31147757782753, 768384638386639, 19814802390611131, 545309251861956001, 15661899520801953217, 475833949719419469223, 15042718034104688144299
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Comments

From Peter Bala, Nov 14 2017: (Start)
The terms of the sequence appear to be of the form 6*m + 1.
It appears that the sequence taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(7*n+2) == 0 (mod 7); a(11*n+9) == 0 (mod 11); a(13*n+11) == 0 (mod 13). (End)

Crossrefs

E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): A294363 (k=0), this sequence (k=1), A294362 (k=2).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k)*x^k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000203(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(k*x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
a(n) ~ Pi^(1/3) * exp((3*Pi)^(2/3) * n^(2/3)/2 - 3^(1/3) * n^(1/3) / (2*Pi^(2/3)) + 1/24 - 1/(8*Pi^2) - n) * n^(n - 1/6) / 3^(2/3). - Vaclav Kotesovec, Sep 04 2018

A320776 Inverse Euler transform of the number of prime factors (with multiplicity) function A001222.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, -1, -1, 0, 1, 0, -1, -1, -1, 1, 3, 3, -2, -5, -4, 0, 7, 7, 0, -9, -10, 2, 15, 15, -3, -27, -30, 3, 46, 51, 1, -71, -91, -7, 117, 157, 23, -194, -265, -57, 318, 465, 111, -536, -821, -230, 893, 1456, 505, -1485, -2559, -1036, 2433, 4483, 2022
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320777, A320778, A320779, A320780, A320781, A320782.

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-NumberOfPrimeFactors(n))):
    seq(a(n), n = 0..59); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[PrimeOmega,100]]

A320777 Inverse Euler transform of the number of distinct prime factors (without multiplicity) function A001221.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 0, -1, -1, 1, 1, 0, -1, 0, 1, -1, -2, 1, 3, 1, -2, -2, 1, 0, -4, 0, 6, 6, -4, -8, 1, 4, -4, -5, 10, 16, -4, -25, -7, 17, 5, -16, 2, 42, 12, -58, -48, 40, 59, -27, -44, 67, 86, -103, -187, 36, 236, 45, -213, -5, 284, -23, -526, -188, 663, 520
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320776, A320778, A320779, A320780, A320781, A320782.

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[PrimeNu,100]]

A320782 Inverse Euler transform of the unsigned Moebius function A008966.

Original entry on oeis.org

1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -2, 3, 0, -1, -3, 6, -3, 0, -6, 12, -6, 0, -9, 23, -17, 0, -15, 47, -40, 8, -24, 91, -101, 34, -46, 181, -230, 109, -92, 354, -534, 323, -208, 690, -1177, 883, -520, 1365, -2603, 2297, -1377, 2760, -5641, 5789, -3721, 5741
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320776, A320777, A320778, A320779, A320780, A320781.

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Table[Abs[MoebiusMu[n]],{n,30}]]

A288385 Expansion of Product_{k>=1} (1 - x^k)^sigma(k).

Original entry on oeis.org

1, -1, -3, -1, 0, 10, 8, 12, 1, -28, -29, -67, -51, -28, 79, 163, 256, 343, 273, 136, -351, -649, -1446, -1751, -1889, -1453, -124, 1924, 5138, 7608, 10636, 10903, 10054, 3143, -5799, -20521, -37217, -53057, -65661, -66086, -54430, -15648, 37179, 122732
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2017

Keywords

Crossrefs

Product_{k>=1} (1 - x^k)^sigma_m(k): A288098 (m=0), this sequence (m=1), A288389 (m=2), A288392 (m=3).

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*sigma(d), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          -add(b(n-i)*a(i), i=0..n-1))
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Jun 08 2017
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*DivisorSigma[1, d], {d,
         Divisors[j]}]*b[n - j], {j, 1, n}]/n];
    a[n_] := a[n] = If[n == 0, 1, -Sum[b[n - i]*a[i], {i, 0, n - 1}]];
    Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)

Formula

Convolution inverse of A061256.
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A001001(k)*a(n-k) for n > 0.
G.f.: exp(-Sum_{k>=1} sigma_2(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 29 2018

A072169 Commuting permutations: number of ordered triples of permutations f, g, h in Symm(n) which all commute.

Original entry on oeis.org

1, 1, 8, 48, 504, 4680, 66240, 856800, 14515200, 242040960, 4775500800, 95520902400, 2175146265600, 50438868480000, 1292330988748800, 34092378448128000, 971277752180736000, 28566680100102144000, 896191466580393984000, 29029508406664077312000
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2003. More terms from A061256 from N. J. A. Sloane, Jun 13 2012

Keywords

References

  • a(1)-a(7) computed by John McKay, Sep 06 2003.

Crossrefs

Column k=3 of A362827.

Programs

  • Magma
    for n in {1 .. 5} do G := SymmetricGroup(n); t1 := 0; for g in G do for h in G do for i in G do if g*h eq h*g and g*i eq i*g and h*i eq i*h then t1 := t1+1; end if; end for; end for; end for; n, t1; end for;
  • Mathematica
    nn = 20; b = Table[DivisorSigma[1, n], {n, nn}]; Range[0, nn]! CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}],  x] (* T. D. Noe, Jun 19 2012 *)

Formula

Equals A061256(n)*n!.

A305127 Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(sigma(k)/k), where sigma(k) is the sum of the divisors of k.

Original entry on oeis.org

1, 1, 5, 23, 179, 1279, 13699, 135085, 1764377, 22527521, 344625461, 5283739471, 94562354875, 1685808248383, 33947023942259, 694786150879829, 15613612524749489, 357353282848083265, 8880505496901812197, 224851013929747732231, 6106205671049245677251, 169523515381173773551871
Offset: 0

Views

Author

Ilya Gutkovskiy, May 26 2018

Keywords

Comments

a(n)/n! is the Euler transform of [1, 3/2, 4/3, 7/4, 6/5, ... = sums of reciprocals of divisors of 1, 2, 3, 4, 5, ...].

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc(n) option remember; `if`(n = 0, 1, add(add(sigma(d), d = divisors(j))*a(n-j), j = 1..n)/n) end proc; seq(n!*a(n), n = 0..20); # Vaclav Kotesovec, Sep 04 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[1, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Sum[Sum[x^(j k)/(j k (1 - x^(j k))), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d DivisorSigma[-1, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
    nmax = 21; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[1, k]/k, j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2018 *)

Formula

E.g.f.: Product_{k>=1} 1/(1 - x^k)^(A017665(k)/A017666(k)).
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(j*k*(1 - x^(j*k)))).
log(a(n)/n!) ~ sqrt(n) * Pi^2 / 3. - Vaclav Kotesovec, Sep 04 2018

A318784 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_1(k)-k), where sigma_1(k) = sum of divisors of k (A000203).

Original entry on oeis.org

1, 0, 1, 1, 4, 2, 11, 6, 25, 20, 56, 44, 139, 107, 283, 266, 619, 567, 1317, 1242, 2680, 2705, 5403, 5539, 10947, 11339, 21291, 23013, 41494, 45213, 79991, 88312, 151546, 170908, 284901, 324421, 532505, 611227, 981002, 1142000, 1797451, 2105773, 3268765, 3855050, 5889704, 7004451
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 03 2018

Keywords

Comments

Convolution of A061256 and A073592.
Euler transform of A001065.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          (sigma(d)-d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 03 2018
  • Mathematica
    nmax = 45; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[1, k] - k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Exp[Sum[DivisorSigma[2, k] x^(2 k)/(k (1 - x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (DivisorSigma[1, d] - d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 45}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A001065(k).
G.f.: exp(Sum_{k>=1} sigma_2(k)*x^(2*k)/(k*(1 - x^k))), where sigma_2(k) = sum of squares of divisors of k (A001157).
a(n) ~ exp(3^(2/3) * c^(1/3) * n^(2/3)/2 - Pi^2 * n^(1/3) / (4 * 3^(2/3) * c^(1/3)) - Pi^4/(288*c) - 1/8) * A^(3/2) * c^(1/8) / (3^(5/8) * (2*Pi)^(11/24) * n^(5/8)), where c = (Pi^2 - 6)*Zeta(3) and A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Sep 03 2018

A226313 Number of commuting 4-tuples of elements from S_n, divided by n!.

Original entry on oeis.org

1, 8, 21, 84, 206, 717, 1810, 5462, 13859, 38497, 96113, 253206, 620480, 1566292, 3770933, 9212041, 21768608, 51795427, 120279052, 279849177, 639379257, 1459282932, 3283758256, 7369471795, 16351101855, 36147590987, 79162129897, 172646751524, 373527250619, 804631686843, 1721283389932, 3666041417241
Offset: 1

Views

Author

N. J. A. Sloane, Jun 08 2013

Keywords

Comments

Euler transform of A001001.

Crossrefs

Column k=4 of A362826.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; add(d*sigma(d), d=divisors(n)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Mar 06 2015
  • Mathematica
    b[n_] := b[n] = DivisorSum[n, #*DivisorSigma[1, #]&];
    a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSum[j, #*b[#]&]*a[n-j], {j, 1, n}] /n];
    Array[a, 40] (* Jean-François Alcover, Mar 27 2017, after Alois P. Heinz *)
    nmax = 40; Rest[CoefficientList[Series[Exp[Sum[Sum[Sum[d*DivisorSigma[1, d], {d, Divisors[k]}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Mar 31 2018 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=vector(n,i,1)); for(k=1, 2, v=dirmul(v, vector(n,i,i^k))); EulerT(v)} \\ Andrew Howroyd, May 09 2023

Formula

a(n) ~ exp(2^(7/4) * Pi^(3/2) * Zeta(3)^(1/4) * n^(3/4) / (3^(3/2) * 5^(1/4)) - sqrt(5*Zeta(3)*n) / (2^(3/2)*Pi) + (sqrt(Pi) * 5^(1/4) / (2^(15/4) * 3^(3/2) * Zeta(3)^(1/4)) - sqrt(3) * 5^(5/4) * Zeta(3)^(3/4) / (2^(15/4) * Pi^(7/2))) * n^(1/4) - 25*Zeta(3) / (16*Pi^6) + (5 - 2*Zeta(3)) / (192*Pi^2)) * Pi^(1/4) * Zeta(3)^(1/8) / (2^(13/8) * 3^(1/4) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Mar 26 2018
Previous Showing 21-30 of 45 results. Next