cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A137491 Numbers with 28 divisors.

Original entry on oeis.org

960, 1344, 1728, 2112, 2240, 2496, 3264, 3520, 3648, 4160, 4416, 4928, 5440, 5568, 5824, 5832, 5952, 6080, 7104, 7290, 7360, 7616, 7872, 8000, 8256, 8512, 9024, 9152, 9280, 9920, 10176, 10206, 10304, 11328, 11712, 11840, 11968, 12864, 12992, 13120
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^27 (subset of A122968), p*q^13, p*q*r^6 (A179672) or p^3*q^6 (A179694), where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n)) = 28.

A137487 Numbers with 24 divisors.

Original entry on oeis.org

360, 420, 480, 504, 540, 600, 630, 660, 672, 756, 780, 792, 864, 924, 936, 990, 1020, 1050, 1056, 1092, 1120, 1140, 1152, 1170, 1176, 1188, 1224, 1248, 1350, 1368, 1380, 1386, 1400, 1404, 1428, 1470, 1500, 1530, 1540, 1596, 1632, 1638, 1650, 1656, 1710
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^23, p^2*q^7, p*q^2*r^3 (like 360, 504), p*q*r^5 (like 480, 672), p*q*r*s^2 (like 420, 660), p^3*q^5 (like 864) or p*q^11, where p, q, r and s are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n))=24.

A299795 Numbers of the form p*2^(p-1) where p is prime.

Original entry on oeis.org

4, 12, 80, 448, 11264, 53248, 1114112, 4980736, 96468992, 7784628224, 33285996544, 2542620639232, 45079976738816, 189115999977472, 3307330976350208, 238690780250636288, 17005592192950992896, 70328211781017665536, 4943727411754159833088, 83822005070936202543104
Offset: 1

Views

Author

Peter Luschny, Mar 03 2018

Keywords

Crossrefs

A subsequence of A001787 and A300332.

Programs

  • Magma
    [NthPrime(n)*2^(NthPrime(n) -1): n in [1..30]]; // G. C. Greubel, Mar 07 2018
  • Maple
    Primes := select(isprime, [$1..71]):
    seq(p*2^(p-1), p in Primes);
  • Mathematica
    Table[Prime[n]*2^(Prime[n] -1), {n,1,30}] (* G. C. Greubel, Mar 07 2018 *)
  • PARI
    a(n) = my(p = prime(n)); p*2^(p-1); \\ Michel Marcus, Mar 07 2018
    

Formula

From Michel Marcus, Mar 07 2018: (Start)
a(n) = prime(n)*2^(prime(n)-1).
a(n) = A000040(n)*A061286(n).
a(n) = A001787(A000040(n)).
(End)

A358820 a(n) is the least novel k such that d(k)|n, where d is the divisor counting function A000005.

Original entry on oeis.org

1, 2, 4, 3, 16, 5, 64, 6, 9, 7, 1024, 8, 4096, 11, 25, 10, 65536, 12, 262144, 13, 49, 17, 4194304, 14, 81, 19, 36, 15, 268435456, 18, 1073741824, 21, 121, 23, 625, 20, 68719476736, 29, 169, 22, 1099511627776, 28, 4398046511104, 26, 100, 31, 70368744177664, 24
Offset: 1

Views

Author

David James Sycamore, Dec 02 2022

Keywords

Comments

In other words, a(n) = Min{k_j; 1 <= j <= d(n), such that d(k_j) = m_j}, where m_j|n, and k_j has not appeared earlier.
a(n) is composite iff n is odd, and prime p (the least that has not occurred earlier) iff 2|n, and if for any other m|n, and k such that d(k) = m; k > p.
The primes appear in natural order, and records > 1 are 2^(prime(k)-1); k = 1,2,...
Conjectured to be a permutation of the positive integers.
For each n, there is some k <= n such that a(k*d(n)) = n, so (1) a((log 2 + o(1))*n log n/log log n) > n by Wigert's theorem and (2) this sequence is a permutation of the positive integers. - Charles R Greathouse IV, Dec 03 2022

Examples

			a(1)=1 since d(1)=1 and 1 has no other divisors.
a(2)=2 since 2 is the smallest number having just 2 divisors.
a(5)=16 since 5 is prime and 16 is the smallest number having 5 divisors.
a(15)=25 since 15 has divisors 25 is the least novel number having 3 divisors, 81 is the least having 5 divisors and 144 is the least having 15 divisors.
		

Crossrefs

Cf. A000005, A005179, A061286, A128555 (inverse).

Programs

Formula

a(prime(k)) = 2^(prime(k) - 1) (see A061286).
n log log n/log n << a(n) <= 2^(n-1), see comments. - Charles R Greathouse IV, Dec 03 2022

Extensions

a(26) and beyond from Michael S. Branicky, Dec 02 2022
a(24) corrected by Michael De Vlieger, Dec 05 2022

A137489 Numbers with 26 divisors.

Original entry on oeis.org

12288, 20480, 28672, 45056, 53248, 69632, 77824, 94208, 118784, 126976, 151552, 167936, 176128, 192512, 217088, 241664, 249856, 274432, 290816, 299008, 323584, 339968, 364544, 397312, 413696, 421888, 438272, 446464, 462848, 520192, 536576
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^25 (5th powers of A050997, subset of A010813) or p*q^12, where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n))=26.

A200815 Number of iterations of k -> d(k) until n reaches an odd prime.

Original entry on oeis.org

0, 1, 0, 2, 0, 2, 1, 2, 0, 3, 0, 2, 2, 1, 0, 3, 0, 3, 2, 2, 0, 3, 1, 2, 2, 3, 0, 3, 0, 3, 2, 2, 2, 2, 0, 2, 2, 3, 0, 3, 0, 3, 3, 2, 0, 3, 1, 3, 2, 3, 0, 3, 2, 3, 2, 2, 0, 4, 0, 2, 3, 1, 2, 3, 0, 3, 2, 3, 0, 4, 0, 2, 3, 3, 2, 3, 0, 3, 1, 2, 0, 4, 2, 2, 2, 3, 0
Offset: 3

Views

Author

Keywords

Comments

Csajbók and Kasza call this the tau-iteration length.

Examples

			d(10) = 4 and d(4) = 3, an odd prime, so a(10) = 2.
		

Crossrefs

Programs

  • Mathematica
    nop[n_]:=Length[NestWhileList[DivisorSigma[0,#]&,n,#<3 || CompositeQ[ #]&]]-1; Array[ nop,100,3] (* Harvey P. Dale, Nov 14 2020 *)
  • PARI
    a(n)=my(i);while(!isprime(n),i++;n=numdiv(n));i

Formula

a(n) <= pi(log_2(n)) = A000720(A000523(n)).
a(n) = A036459(n)-1 = A060937(n)-2, for n >= 3. - Antti Karttunen, Oct 06 2017

A269781 a(n) is the smallest k different from n such that (n, k) is an amicably refactorable pair (see the comments).

Original entry on oeis.org

4, 3, 16, 4, 64, 24, 36, 16, 1024, 6, 4096, 64, 4, 5, 65536, 12, 262144, 6, 4, 1024, 4194304, 8, 81, 4096, 4, 6, 268435456, 16, 1073741824, 6, 4, 65536, 16, 9, 68719476736, 262144, 4, 8, 1099511627776, 32, 4398046511104, 6, 36, 4194304, 70368744177664, 10, 729, 48, 4, 6, 4503599627370496, 32, 16, 8
Offset: 3

Views

Author

Waldemar Puszkarz, May 01 2016

Keywords

Comments

Let m and k be distinct integers and numdiv(n) be the number of divisors of n (A000005(n)). We call m and k amicably refactorable if numdiv(m) divides k and numdiv(k) divides m.
For any n with no amicably refactorable partner, a(n) = 0.
Conjecture: the sequence contains no zeros.
1 does not have an amicable partner as all other numbers have more than one divisor and 2 does not have an amicable partner as all other numbers with two divisors are odd primes and cannot be divided by the number of divisors of 2, also 2. All other numbers may have an amicably refactorable partner, though for some, primes, semiprimes and squares of primes in particular, this number can be quite large.
For primes and semiprimes, a(n) = 2^(f(n) - 1), (see A061286), where f(n) is their largest prime factor. For squares of primes, a(n) = 3^(|sqrt(n)| - 1), except for n = 9 for which this formula yields 9; this forces us to choose the next best candidate: 36.

Examples

			For n=5, a(5)=16 as the number of divisors of n (2) divides a(n) while the number of divisors of a(n) (5) divides 5 and 16 is the smallest number for which this happens.
		

Crossrefs

Cf. A000005 (number of divisors), A033950 (refactorable numbers), A061286 (subsequence for odd prime indices and semiprime indices), A268037, A272353 (related sequences).

Programs

  • Mathematica
    A269781 = {}; Do[k = 1; If[PrimeQ[n] || PrimeNu[n] == 2 && PrimeOmega[n] == 2, AppendTo[A269781, 2^(First[Last[FactorInteger[n]]] - 1)], If[PrimeQ @ Sqrt @ n && (n > 9), AppendTo[A269781, 3^(Sqrt[n] - 1)],While[k != n && !(Divisible[n, DivisorSigma[0, k]] && Divisible[k, DivisorSigma[0, n]]), k++]; If[k == n, k = n + 1; While[!(Divisible[n, DivisorSigma[0, k]] && Divisible[k, DivisorSigma[0, n]]), k++]]; AppendTo[A269781, k]]], {n, 3, 56}]; A269781

A278741 Odd numbers k such that tau(k-1) is a prime.

Original entry on oeis.org

3, 5, 17, 65, 1025, 4097, 65537, 262145, 4194305, 268435457, 1073741825, 68719476737, 1099511627777, 4398046511105, 70368744177665, 4503599627370497, 288230376151711745, 1152921504606846977, 73786976294838206465, 1180591620717411303425, 4722366482869645213697
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2016

Keywords

Comments

tau(k) = A000005(k) = the number of divisors of k.
Conjecture: prime terms are in A249759: 3, 5, 17, 65537, ...
Supersequence of A256438 and A249759. Subsequence of {A009087(n) + 1}.

Examples

			Odd number 65 is in the sequence because tau(64) = 7 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in[2..10000000] |  IsOdd(n) and IsPrime(NumberOfDivisors(n-1))];
    
  • PARI
    isok(n) = (n % 2) && isprime(numdiv(n-1)); \\ Michel Marcus, Nov 27 2016

Formula

a(n) = A061286(n) + 1.
sigma(a(n)-1) = A001348(n), i.e., Mersenne numbers.
tau(a(n)-1) = A000040(n), i.e., all primes; a(n) = the smallest odd number k such that tau(a(n)-1) = prime(n) = A000040(n).

A135620 a(n) = 2^(prime(n) - 2).

Original entry on oeis.org

1, 2, 8, 32, 512, 2048, 32768, 131072, 2097152, 134217728, 536870912, 34359738368, 549755813888, 2199023255552, 35184372088832, 2251799813685248, 144115188075855872, 576460752303423488, 36893488147419103232, 590295810358705651712, 2361183241434822606848, 151115727451828646838272
Offset: 1

Views

Author

Omar E. Pol, Mar 01 2008

Keywords

Crossrefs

Partial differences of A135482.

Programs

Formula

a(n) = 2^(A000040(n)-2) = 2^(A040976(n)) = 2^A000040(n)/4 = A061286(n)/2.
a(n) = A034785(n)/4. - Alois P. Heinz, Jun 08 2025

A187678 The smallest integer for which the number of divisors is the n-th nonprime.

Original entry on oeis.org

1, 6, 12, 24, 36, 48, 60, 192, 144, 120, 180, 240, 576, 3072, 360, 1296, 12288, 900, 960, 720, 840, 9216, 196608, 5184, 1260, 786432, 36864, 1680, 2880, 15360, 3600, 12582912, 2520, 46656, 6480, 589824, 61440, 6300, 82944, 6720, 2359296, 805306368, 5040, 3221225472, 14400, 7560
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 12 2011

Keywords

Crossrefs

Formula

a(n) = A005179(A018252(n)).
Previous Showing 11-20 of 33 results. Next