cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A130739 Sum of primes < 2^n.

Original entry on oeis.org

0, 5, 17, 41, 160, 501, 1720, 6081, 22548, 80189, 289176, 1070091, 3908641, 14584641, 54056763, 202288087, 761593692, 2867816043, 10862883985, 41162256126, 156592635694, 596946687124, 2280311678414, 8729068693022
Offset: 1

Views

Author

Graeme McRae, Jul 06 2007

Keywords

Examples

			a(3) is 17 because the sum of primes less than 2^3 is 2+3+5+7=17.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Prime[i], {i, PrimePi[2^n-1]}], {n, 1, 10}]
  • PARI
    a(n) = {s = 0; forprime(p=2, 2^n-1, s +=p); return (s);} \\ Michel Marcus, Jul 17 2013

Formula

a(n) = Sum_{i=2..2^n-1} A061397(i).

A219224 G.f.: exp( Sum_{n>=1} A005063(n)*x^n/n ), where A005063(n) = sum of squares of primes dividing n.

Original entry on oeis.org

1, 0, 2, 3, 3, 11, 10, 26, 32, 51, 90, 117, 198, 283, 417, 610, 890, 1284, 1848, 2615, 3716, 5217, 7289, 10222, 14158, 19514, 26882, 36805, 50131, 68428, 92466, 125128, 168093, 225775, 302171, 402876, 536730, 711601, 942009, 1243513, 1638395, 2152828, 2823004
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2012

Keywords

Comments

Euler transform of A061397. - Peter Luschny, Nov 21 2022

Examples

			G.f.: A(x) = 1 + 2*x^2 + 3*x^3 + 3*x^4 + 11*x^5 + 10*x^6 + 26*x^7 + 32*x^8 +...
where
log(A(x)) = 4*x^2/2 + 9*x^3/3 + 4*x^4/4 + 25*x^5/5 + 13*x^6/6 + 49*x^7/7 + 4*x^8/8 + 9*x^9/9 + 29*x^10/10 + 121*x^11/11 + 13*x^12/12 + 169*x^13/13 + 53*x^14/14 + 34*x^15/15 +...+ A005063(n)*x^n/n +...
		

Crossrefs

Programs

  • Maple
    # The function EulerTransform is defined in A358369.
    a := EulerTransform(n -> ifelse(isprime(n), n, 0)):
    seq(a(n), n = 0..42); # Peter Luschny, Nov 21 2022
  • Mathematica
    a[n_] := SeriesCoefficient[ Exp[ Sum[ DivisorSum[k, Boole[PrimeQ[#]] * #^2&] * x^k/k, {k, 1, n+1}]], {x, 0, n}]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jul 11 2017, from PARI *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n+1,sumdiv(k,d,isprime(d)*d^2)*x^k/k)+x*O(x^n)),n)}
    for(n=0,50,print1(a(n),", "))

A319131 a(n) = Sum_{d|n} Sum_{p|d, p prime} p.

Original entry on oeis.org

0, 2, 3, 4, 5, 10, 7, 6, 6, 14, 11, 17, 13, 18, 16, 8, 17, 18, 19, 23, 20, 26, 23, 24, 10, 30, 9, 29, 29, 40, 31, 10, 28, 38, 24, 30, 37, 42, 32, 32, 41, 48, 43, 41, 27, 50, 47, 31, 14, 26, 40, 47, 53, 26, 32, 40, 44, 62, 59, 64, 61, 66, 33, 12, 36, 64, 67, 59, 52, 56
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2018

Keywords

Comments

Inverse Möbius transform of A008472.

Examples

			a(12) = 13 as 12 has 6 divisors and 2 * 6 * (2/3) + 3 * 6 * (1/2) = 17. - _David A. Corneth_, Oct 08 2019
		

Crossrefs

Programs

  • Magma
    [0] cat  [&+[&+[PrimeDivisors(d)[i]:i in [1..#PrimeDivisors(d)]]:d in Set(Divisors(n)) diff {1}]:n in [2..70]]; // Marius A. Burtea, Oct 08 2019
    
  • Magma
    [0] cat [&+[p*#Divisors(n div p):p in PrimeDivisors(n)]:n in [2..70]]; // Marius A. Burtea, Oct 08 2019 (According to the formula given by Ridouane Oudra)
  • Maple
    with(numtheory): seq(add(p*tau(n/p), p in factorset(n)), n=1..80); # Ridouane Oudra, Oct 08 2019
  • Mathematica
    Table[Sum[Total[Select[Divisors[d], PrimeQ]], {d, Divisors[n]}], {n, 70}]
    nmax = 70; Rest[CoefficientList[Series[Sum[DivisorSum[k, # &, PrimeQ[#] &] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 70; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^(DivisorSum[k, # &, PrimeQ[#] &]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
  • PARI
    a(n) = sumdiv(n, d, my(f=factor(d)); vecsum(f[,1])); \\ Michel Marcus, Oct 08 2019
    
  • PARI
    a(n) = my(f = factor(n), nd = numdiv(f)); sum(i = 1, #f~, f[i, 1] * nd / (f[i, 2] + 1) * f[i, 2]) \\ David A. Corneth, Oct 08 2019
    

Formula

G.f.: Sum_{k>=1} A008472(k)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(A008472(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
a(p^k) = p*k, where p is a prime.
a(n) = Sum_{p|n} p*tau(n/p), where p is a prime and tau(n) = A000005(n). - Ridouane Oudra, Oct 08 2019
a(n) = Sum_{p|n} p*tau(n)*(e_p-1)/(e_p) where e_p is the exponent of p in the factorization of n. - David A. Corneth, Oct 08 2019
a(n) = Sum_{d|n} sopf(d). - Wesley Ivan Hurt, May 23 2021

A369744 a(n) = Sum_{p|n, p prime} p * omega(n/p).

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 2, 3, 7, 0, 7, 0, 9, 8, 2, 0, 8, 0, 9, 10, 13, 0, 7, 5, 15, 3, 11, 0, 20, 0, 2, 14, 19, 12, 10, 0, 21, 16, 9, 0, 24, 0, 15, 11, 25, 0, 7, 7, 12, 20, 17, 0, 8, 16, 11, 22, 31, 0, 22, 0, 33, 13, 2, 18, 32, 0, 21, 26, 28, 0, 10, 0, 39, 13, 23, 18, 36
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 30 2024

Keywords

Comments

Dirichlet convolution of A061397(n) and A001221(n). - Wesley Ivan Hurt, Apr 24 2025

Crossrefs

Cf. also A369911.

Programs

  • Mathematica
    Table[DivisorSum[n, #*PrimeNu[n/#] &, PrimeQ[#] &], {n, 100}]
  • PARI
    A369744(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i,1]*omega(n/f[i, 1]))); \\ Antti Karttunen, Jan 23 2025

Formula

a(p^k) = 1 for p prime and k = 1, else p if k >= 2. - Wesley Ivan Hurt, Jun 26 2024
a(n) = Sum_{d|n} d * omega(n/d) * c(d), where c = A010051. - Wesley Ivan Hurt, Apr 15 2025

A073046 Write 2*n = p+q (p,q prime), p*q minimal; then a(n) = p*q.

Original entry on oeis.org

4, 9, 15, 21, 35, 33, 39, 65, 51, 57, 95, 69, 115, 161, 87, 93, 155, 217, 111, 185, 123, 129, 215, 141, 235, 329, 159, 265, 371, 177, 183, 305, 427, 201, 335, 213, 219, 365, 511, 237, 395, 249, 415, 581, 267, 445, 623, 1501, 291, 485, 303, 309, 515, 321, 327
Offset: 2

Views

Author

Werner D. Sand, Aug 31 2002

Keywords

Comments

Least semiprime whose sum of prime factors equals 2*n.
Assuming Goldbach's conjecture, a(n) exists for all n >= 2. - David James Sycamore, Jan 08 2019

Examples

			n=13: 2n=26; 26 = 23 + 3 = 19 + 7 = 13 + 13; 23*3 = minimal => p*q = 23*3 = 69.
		

Crossrefs

Programs

  • Haskell
    a073046 n = head $ dropWhile (== 0) $
                       zipWith (*) prims $ map (a061397 . (2*n -)) prims
       where prims = takeWhile (<= n) a000040_list
    -- Reinhard Zumkeller, Aug 28 2011
  • Mathematica
    Array[Block[{p = 2, q}, While[! PrimeQ@ Set[q, 2 # - p], p = NextPrime[p]]; p q] &, 55, 2] (* Michael De Vlieger, Aug 02 2020 *)

Formula

For all n except 3, a(n) = A288814(2*n). - David James Sycamore, Jan 08 2019

Extensions

Corrected by Ray Chandler, Jun 11 2005

A120007 Mobius transform of sum of prime factors of n with multiplicity (A001414).

Original entry on oeis.org

0, 2, 3, 2, 5, 0, 7, 2, 3, 0, 11, 0, 13, 0, 0, 2, 17, 0, 19, 0, 0, 0, 23, 0, 5, 0, 3, 0, 29, 0, 31, 2, 0, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 0, 0, 47, 0, 7, 0, 0, 0, 53, 0, 0, 0, 0, 0, 59, 0, 61, 0, 0, 2, 0, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 0, 0, 79, 0, 3, 0, 83, 0, 0, 0, 0, 0, 89, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Same as A014963, except this function is zero when n is not a prime power, whereas A014963 is one.
Moreover, this sequence, A014963, A297108 and A297109 partition the natural numbers to identical equivalence classes: For all i, j >= 1, a(i) = a(j) <=> A014963(i) = A014963(j) <=> A297108(i) = A297108(j) <=> A297109(i) = A297109(j). - Antti Karttunen, Feb 01 2021

Crossrefs

Cf. A000040, A001414, A007947, A014963, A010051, A010055, A061397, A070939, A140508 (Möbius transform of this sequence), A297108, A297109.

Programs

  • Haskell
    a120007 1 = 0
    a120007 n | until ((> 0) . (`mod` spf)) (`div` spf) n == 1 = spf
              | otherwise = 0
              where spf = a020639 n
    -- Reinhard Zumkeller, Sep 19 2011
    
  • Mathematica
    Table[If[Length@ # == 1, #[[1, 1]], 0] &@ FactorInteger@ n, {n, 96}] /. 1 -> 0 (* Michael De Vlieger, Jun 19 2016 *)
    Table[If[PrimePowerQ[n],FactorInteger[n][[1,1]],0],{n,100}] (* Harvey P. Dale, Jan 25 2020 *)
  • PARI
    A120007(n) = { my(v); if(isprimepower(n, &v), v, 0); }; \\ Antti Karttunen, Jan 31 2021

Formula

If n is a prime power p^k, k>0, a(n) = p; otherwise a(n) = 0.
Dirichlet g.f. sum_{p prime} p/(p^s-1) = sum_{k>0} primezeta(ks-1).
a(n) = A010055(n) * A007947(n). - Reinhard Zumkeller, Mar 26 2010
a(n) = A061397(A007947(n)). - Reinhard Zumkeller, Sep 19 2011, corrected by Antti Karttunen, Jan 31 2021
a(n) = Sum_{k=2..n} k*A010051(k)*(floor(k^n/n)-floor((k^n -1)/n)). - Anthony Browne, Jun 17 2016
If A297109(n) = 0, then a(n) = 0, otherwise a(n) = A000040(A297109(n)). - Antti Karttunen, Feb 01 2021

A182936 Greatest common divisor of the proper divisors of n, 0 if there are none.

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 0, 2, 3, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 1, 5, 1, 3, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 7, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 3, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Peter Luschny, Mar 22 2011

Keywords

Comments

Here a proper divisor d of n is a divisor of n such that 1 < d < n.

Crossrefs

Programs

  • Maple
    A182936 := n -> igcd(op(numtheory[divisors](n) minus {1,n}));
    seq(A182936(i), i=1..79); # Peter Luschny, Mar 22 2011
  • Mathematica
    Join[{0}, Table[GCD@@Most[Rest[Divisors[n]]],{n,2,110}]] (* Harvey P. Dale, May 04 2018 *)
    (* From Peter Luschny, Jan 31 2025: (Start) *)
    Join[{0}, Table[Exp[MangoldtLambda[n]] - If[PrimeQ[n], n, 0], {n,2,110}]]
    (* or *)
    Table[Cyclotomic[n, 1] - If[PrimeQ[n], n, 0], {n,1,110}] (* End *)
  • PARI
    A182936(n) = { my(divs=divisors(n)); if(#divs<3,0,gcd(vector(numdiv(n)-2,k,divs[k+1]))); }; \\ Antti Karttunen, Sep 23 2017

Formula

a(n) = 0 if n is not composite, p if n is a proper power of prime p, and 1 otherwise. - Franklin T. Adams-Watters, Mar 22 2011
Conjecture: Sum_{k=1..n} a(k) = A072107(n) - A034387(n) - 1. - Vaclav Kotesovec, Jan 29 2025
From Peter Luschny, Jan 31 2025: (Start)
a(n) = A014963(n) - A061397(n) for n > 1. In other words, this sequence is the exponential von Mangoldt function restricted to proper divisors of n. See A380118. This implies the above conjecture.
a(n) = A020500(n) - A061397(n). (End)

Extensions

More terms from Antti Karttunen, Sep 23 2017

A191558 a(n) = 0 if n prime, otherwise n.

Original entry on oeis.org

1, 0, 0, 4, 0, 6, 0, 8, 9, 10, 0, 12, 0, 14, 15, 16, 0, 18, 0, 20, 21, 22, 0, 24, 25, 26, 27, 28, 0, 30, 0, 32, 33, 34, 35, 36, 0, 38, 39, 40, 0, 42, 0, 44, 45, 46, 0, 48, 49, 50, 51, 52, 0, 54, 55, 56, 57, 58, 0, 60, 0, 62, 63, 64, 65, 66, 0, 68, 69, 70, 0, 72, 0, 74, 75, 76, 77, 78, 0, 80, 81, 82, 0, 84, 85, 86, 87, 88, 0, 90, 91, 92, 93, 94
Offset: 1

Views

Author

Vincenzo Librandi, Jun 07 2011

Keywords

Crossrefs

Cf. A002808.

Programs

  • Magma
    [IsPrime(n) select 0 else n: n in [1..100]]; // Vincenzo Librandi, May 17 2014
  • Maple
    A191558 := proc(n) if isprime(n) then 0; else n; end if; end proc:
    seq(A191558(n),n=1..80) ; # R. J. Mathar, Jun 11 2011
  • Mathematica
    Table[If[PrimeQ[n], 0, n], {n, 150}] (* Vincenzo Librandi, May 17 2014 *)
    (*recurrence*)
    Clear[t];
    nn = 94;
    t[1, 1] = 1;
    t[n_, k_] :=
      t[n, k] =
       If[n == k, n*(1 - Product[t[n, k - i], {i, 1, k - 1}]),
        If[n > k, t[n - k, k], 1]];
    Table[t[n, n], {n, 1, nn}](* Mats Granvik, Jul 05 2014 *)
    Table[n (1 - PrimePi[n] + PrimePi[n - 1]), {n, 50}] (* Wesley Ivan Hurt, Jul 06 2014 *)

Formula

a(n) = n * A005171(n) = n - A061397(n). - R. J. Mathar, Jun 11 2011

A328260 a(n) = n * omega(n).

Original entry on oeis.org

0, 2, 3, 4, 5, 12, 7, 8, 9, 20, 11, 24, 13, 28, 30, 16, 17, 36, 19, 40, 42, 44, 23, 48, 25, 52, 27, 56, 29, 90, 31, 32, 66, 68, 70, 72, 37, 76, 78, 80, 41, 126, 43, 88, 90, 92, 47, 96, 49, 100, 102, 104, 53, 108, 110, 112, 114, 116, 59, 180, 61, 124, 126, 64, 130, 198, 67, 136, 138, 210
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 09 2019

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n*(#PrimeDivisors(n)):n in [2..70]]; // Marius A. Burtea, Oct 10 2019
    
  • Mathematica
    Table[n PrimeNu[n], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k])^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n)=n*omega(n) \\ Charles R Greathouse IV, Mar 16 2022

Formula

G.f.: Sum_{k>=1} prime(k) * x^prime(k) / (1 - x^prime(k))^2.
a(n) = bigomega(rad(n)^n).
a(n) = Sum_{d|n} A061397(n/d) * d.
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ x/log log x. - Charles R Greathouse IV, Mar 16 2022

A369911 a(n) = Sum_{p|n, p prime} p * sopf(n/p).

Original entry on oeis.org

0, 0, 0, 4, 0, 12, 0, 4, 9, 20, 0, 16, 0, 28, 30, 4, 0, 21, 0, 24, 42, 44, 0, 16, 25, 52, 9, 32, 0, 62, 0, 4, 66, 68, 70, 25, 0, 76, 78, 24, 0, 82, 0, 48, 39, 92, 0, 16, 49, 45, 102, 56, 0, 21, 110, 32, 114, 116, 0, 66, 0, 124, 51, 4, 130, 122, 0, 72, 138, 118, 0, 25
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2024

Keywords

Comments

Dirichlet convolution of A061397(n) and A008472(n). - Wesley Ivan Hurt, Jul 10 2025

Crossrefs

Cf. A008472 (sopf), A061397, A369744.

Programs

  • Mathematica
    a[n_] := Sum[p, {p, Select[Divisors[n], PrimeQ]}]; Table[DivisorSum[n, #*a[n/#] &, PrimeQ[#] &], {n, 100}]
  • PARI
    A008472(n) = vecsum(factor(n)[, 1]);
    A369911(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i,1]*A008472(n/f[i, 1]))); \\ Antti Karttunen, Jan 23 2025

Formula

From Wesley Ivan Hurt, Jul 10 2025: (Start)
a(n) = Sum_{d|n} A061397(d) * A008472(n/d).
a(p^k) = p^2 * (1-floor(1/k)) for p prime and k>=1. (End)
Previous Showing 11-20 of 40 results. Next