cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A153448 3 times 12-gonal (or dodecagonal) numbers: a(n) = 3*n*(5*n-4).

Original entry on oeis.org

0, 3, 36, 99, 192, 315, 468, 651, 864, 1107, 1380, 1683, 2016, 2379, 2772, 3195, 3648, 4131, 4644, 5187, 5760, 6363, 6996, 7659, 8352, 9075, 9828, 10611, 11424, 12267, 13140, 14043, 14976, 15939, 16932, 17955, 19008, 20091, 21204
Offset: 0

Views

Author

Omar E. Pol, Dec 26 2008

Keywords

Comments

This sequence is related to A172117 by 3*A172117(n) = n*a(n) - Sum_{i=0..n-1} a(i) and this is the case d=10 in the identity n*(3*n*(d*n - d + 2)/2) - Sum_{k=0..n-1} 3*k*(d*k - d + 2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/2. - Bruno Berselli, Aug 26 2010

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=30: see Comments lines of A226492.

Programs

Formula

a(n) = 15*n^2 - 12*n = A051624(n)*3.
a(n) = 30*n + a(n-1) - 27 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(1 + 9*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=3, a(2)=36. - Harvey P. Dale, Jun 18 2014
E.g.f.: 3*x*(1 + 5*x)*exp(x). - G. C. Greubel, Aug 21 2016
a(n) = (4*n-2)^2 - (n-2)^2. In general, if P(k,n) is the k-th n-gonal number, then (2*k+1)*P(8*k+4,n) = ((3*k+1)*n-2*k)^2 - (k*n-2*k)^2. - Charlie Marion, Jul 29 2021

A153783 3 times 11-gonal (or hendecagonal) numbers: a(n) = 3*n*(9*n-7)/2.

Original entry on oeis.org

0, 3, 33, 90, 174, 285, 423, 588, 780, 999, 1245, 1518, 1818, 2145, 2499, 2880, 3288, 3723, 4185, 4674, 5190, 5733, 6303, 6900, 7524, 8175, 8853, 9558, 10290, 11049, 11835, 12648, 13488, 14355, 15249, 16170, 17118, 18093, 19095
Offset: 0

Views

Author

Omar E. Pol, Jan 02 2009

Keywords

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=27: see Comments lines of A226492.

Programs

Formula

a(n) = (27*n^2 - 21*n)/2 = A051682(n)*3.
a(n) = 27*n + a(n-1) - 24, with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(1 + 8*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
From G. C. Greubel, Aug 28 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*x*(2 + 9*x)*exp(x). (End)

A153875 3 times 13-gonal (or tridecagonal) numbers: a(n) = 3*n*(11*n - 9)/2.

Original entry on oeis.org

0, 3, 39, 108, 210, 345, 513, 714, 948, 1215, 1515, 1848, 2214, 2613, 3045, 3510, 4008, 4539, 5103, 5700, 6330, 6993, 7689, 8418, 9180, 9975, 10803, 11664, 12558, 13485, 14445, 15438, 16464, 17523, 18615, 19740, 20898, 22089
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2009

Keywords

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=33: see Comments lines of A226492.

Programs

Formula

a(n) = (33*n^2 - 27*n)/2 = A051865(n)*3.
a(n) = a(n-1) + 33*n - 30, with n>0, a(0)=0. - Vincenzo Librandi, Dec 14 2010
G.f.: 3*x*(1 + 10*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
From G. C. Greubel, Aug 31 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*x*(2 + 11*x)*exp(x). (End)

A136158 Triangle whose rows are generated by A136157^n * [1, 1, 0, 0, 0, ...].

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 9, 15, 7, 1, 27, 54, 36, 10, 1, 81, 189, 162, 66, 13, 1, 243, 648, 675, 360, 105, 16, 1, 729, 2187, 2673, 1755, 675, 153, 19, 1, 2187, 7290, 10206, 7938, 3780, 1134, 210, 22, 1, 6561, 24057, 37908, 34020, 19278, 7182, 1764, 276, 25, 1
Offset: 0

Views

Author

Gary W. Adamson, Dec 16 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [1,2,0,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 17 2007
Equals A080419 when first column is removed (here). - Georg Fischer, Jul 25 2023

Examples

			First few rows of the triangle:
    1;
    1,    1;
    3,    4,    1;
    9,   15,    7,    1;
   27,   54,   36,   10,   1;
   81,  189,  162,   66,  13,   1;
  243,  648,  675,  360, 105,  16,  1;
  729, 2187, 2673, 1755, 675, 153, 19, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A136158:= func< n,k | n eq 0 select 1 else 3^(n-k-1)*(n+2*k)* Binomial(n, k)/n >;
    [A136158(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 22 2023; Dec 27 2023
    
  • Mathematica
    A136158[n_,k_]:= If[n==0, 1, 3^(n-k-1)*(n+2*k)*Binomial[n,k]/n];
    Table[A136158[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2023; Dec 27 2023 *)
  • PARI
    T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); 3*T(n-1,k) + T(n-1,k-1);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 25 2023
    
  • SageMath
    def A136158(n,k): return 1 if (n==0) else 3^(n-k-1)*((n+2*k)/n)*binomial(n, k)
    flatten([[A136158(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 22 2023; Dec 27 2023

Formula

Sum_{k=0..n} T(n, k) = A081294(n).
Given A136157 = M, an infinite lower triangular bidiagonal matrix with (3, 3, 3, ...) in the main diagonal, (1, 1, 1, ...) in the subdiagonal and the rest zeros; rows of A136157 are generated from M^n * [1, 1, 0, 0, 0, ...], given a(0) = 1.
T(n, k) = A038763(n,n-k). - Philippe Deléham, Dec 17 2007
T(n, k) = 3*T(n-1, k) + T(n-1, k-1) for n > 1, T(0,0) = T(1,1) = T(1,0) = 1. - Philippe Deléham, Oct 30 2013
Sum_{k=0..n} T(n, k)*x^k = (1+x)*(3+x)^(n-1), n >= 1. - Philippe Deléham, Oct 30 2013
G.f.: (1-2*x)/(1-3*x-x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 22 2023: (Start)
T(n, 0) = A133494(n).
T(n, 1) = A006234(n+2).
T(n, 2) = A080420(n-2).
T(n, 3) = A080421(n-3).
T(n, 4) = A080422(n-4).
T(n, 5) = A080423(n-5).
T(n, n) = A000012(n).
T(n, n-1) = A016777(n-1).
T(n, n-2) = A062741(n-1).
Sum_{k=0..n} (-1)^k * T(n, k) = 0^n = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A003688(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A001519(n). (End)
From G. C. Greubel, Dec 27 2023: (Start)
T(n, k) = 3^(n-k-1)*(n+2*k)*binomial(n,k)/n, for n > 0, with T(0, 0) = 1.
T(n, k) = (-1)^k * A164948(n, k). (End)

Extensions

More terms from Philippe Deléham, Dec 17 2007

A038763 Triangular matrix arising in enumeration of catafusenes, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 7, 15, 9, 1, 10, 36, 54, 27, 1, 13, 66, 162, 189, 81, 1, 16, 105, 360, 675, 648, 243, 1, 19, 153, 675, 1755, 2673, 2187, 729, 1, 22, 210, 1134, 3780, 7938, 10206, 7290, 2187, 1, 25, 276, 1764, 7182, 19278, 34020, 37908, 24057, 6561, 1, 28, 351, 2592, 12474, 40824, 91854, 139968, 137781, 78732, 19683
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
Triangle read by rows, n-th row = X^(n-1) * [1, 1, 0, 0, 0, ...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (3,3,3,...) in the subdiagonal; given row 0 = 1. - Gary W. Adamson, Jul 19 2008
Fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(2x+1)^n; see A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. - Clark Kimberling, Aug 04 2011

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  7,  15,   9;
  1, 10,  36,  54,   27;
  1, 13,  66, 162,  189,   81;
  1, 16, 105, 360,  675,  648,  243;
  1, 19, 153, 675, 1755, 2673, 2187, 729;
		

Crossrefs

Programs

  • Magma
    A038763:= func< n,k | n eq 0 select 1 else 3^(k-1)*(3*n-2*k)*Binomial(n,k)/n >;
    [A038763(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 27 2023
    
  • Mathematica
    A038763[n_,k_]:= If[n==0, 1, 3^(k-1)*(3*n-2*k)*Binomial[n,k]/n];
    Table[A038763[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 27 2023 *)
  • PARI
    T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); T(n-1,k) + 3*T(n-1,k-1);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jul 25 2023
    
  • SageMath
    def A038763(n,k): return 1 if (n==0) else 3^(k-1)*(3*n-2*k)*binomial(n,k)/n
    flatten([[A038763(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 27 2023

Formula

T(n, 0)=1; T(1, 1)=1; T(n, k)=0 for k>n; T(n, k) = T(n-1, k-1)*3 + T(n-1, k) for n >= 2.
Sum_{k=0..n} T(n,k) = A081294(n). - Philippe Deléham, Sep 22 2006
T(n, k) = A136158(n, n-k). - Philippe Deléham, Dec 17 2007
G.f.: (1-2*x*y)/(1-(3*y+1)*x). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 27 2023: (Start)
T(n, 0) = A000012(n).
T(n, 1) = A016777(n-1).
T(n, 2) = A062741(n-1).
T(n, 3) = 9*A002411(n-2).
T(n, 4) = 27*A001296(n-3).
T(n, 5) = 81*A051836(n-4).
T(n, n) = A133494(n).
T(n, n-1) = A006234(n+2).
T(n, n-2) = A080420(n-2).
T(n, n-3) = A080421(n-3).
T(n, n-4) = A080422(n-4).
T(n, n-5) = A080423(n-5).
T(2*n, n) = 4*A098399(n-1) + (2/3)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006138(n-1) + (2/3)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A110523(n-1) + (4/3)*[n=0]. (End)

Extensions

More terms from Michel Marcus, Jul 25 2023

A081271 Vertical of triangular spiral in A051682.

Original entry on oeis.org

1, 13, 34, 64, 103, 151, 208, 274, 349, 433, 526, 628, 739, 859, 988, 1126, 1273, 1429, 1594, 1768, 1951, 2143, 2344, 2554, 2773, 3001, 3238, 3484, 3739, 4003, 4276, 4558, 4849, 5149, 5458, 5776, 6103, 6439, 6784, 7138, 7501, 7873, 8254, 8644, 9043, 9451
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Lies to the right of the y-axis of the triangle.
Binomial transform of (1, 12, 9, 0, 0, 0, ...).

Crossrefs

Cf. A062741, A283394 (see Crossrefs section).

Programs

Formula

G.f.: (1 + 10*x - 2*x^2)/(1 - x)^3.
a(n) = binomial(n,0) + 12*binomial(n,1) + 9*binomial(n,2).
a(n) = (9*n^2 + 15*n + 2)/2.
a(0) = 1, a(n) = a(n-1) + 9*n + 3 for n > 0 - Gerald McGarvey, Aug 18 2004
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: exp(x)*(1 + 12*x + 9*x^2/2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A081272 Downward vertical of triangular spiral in A051682.

Original entry on oeis.org

1, 25, 85, 181, 313, 481, 685, 925, 1201, 1513, 1861, 2245, 2665, 3121, 3613, 4141, 4705, 5305, 5941, 6613, 7321, 8065, 8845, 9661, 10513, 11401, 12325, 13285, 14281, 15313, 16381, 17485, 18625, 19801, 21013, 22261, 23545, 24865, 26221, 27613, 29041, 30505
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Reflection of A081271 in the horizontal A051682.
Binomial transform of (1, 24, 36, 0, 0, 0, .....).
One of the six verticals of a triangular spiral which starts with 1 (see the link). Other verticals are A060544, A081589, A080855, A157889, A038764. - Yuriy Sibirmovsky, Sep 18 2016.

Crossrefs

Programs

  • Mathematica
    Table[n^2 + (n + 1)^2, {n, 0, 300, 3}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 25, 85}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
    Table[n^2 + (n + 1)^2, {n, 0, 150, 3}] (* Vincenzo Librandi, Aug 07 2013 *)
  • PARI
    x='x+O('x^99); Vec((1+22*x+13*x^2)/(1-x)^3) \\ Altug Alkan, Sep 18 2016

Formula

a(n) = C(n, 0) + 24*C(n, 1) + 36*C(n, 2).
a(n) = 18*n^2 + 6*n + 1.
G.f.: (1 + 22*x + 13*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(1 + 24*x + 18*x^2). - Stefano Spezia, Mar 07 2023

A153792 12 times pentagonal numbers: a(n) = 6*n*(3*n-1).

Original entry on oeis.org

0, 12, 60, 144, 264, 420, 612, 840, 1104, 1404, 1740, 2112, 2520, 2964, 3444, 3960, 4512, 5100, 5724, 6384, 7080, 7812, 8580, 9384, 10224, 11100, 12012, 12960, 13944, 14964, 16020, 17112, 18240, 19404, 20604, 21840, 23112, 24420
Offset: 0

Views

Author

Omar E. Pol, Jan 01 2009

Keywords

Comments

For n>=1, a(n) is the first Zagreb index of the triangular grid graph T[n] (see the West reference, p. 390). The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph. - Emeric Deutsch, Nov 10 2016
The M-polynomial of the triangular grid graph T[n] is M(T[n], x, y) = 6*x^2*y^4 + 3*(n-1)*x^4*y^4 +6*(n-2)*x^4*y^6+3*(n-2)*(n-3)*x^6*y^6/2. - Emeric Deutsch, May 09 2018
This is the number of overlapping six sphinx tiled shapes in the sphinx tessellated hexagon described in A291582. - Craig Knecht, Sep 13 2017
a(n) is the number of words of length 3n over the alphabet {a,b,c}, where the number of b's plus the number of c's is 2. - Juan Camacho, Mar 03 2021
Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Mar 12 2021

References

  • D. B. West, Introduction to Graph Theory, 2nd edition, Prentice-Hall, 2001.

Crossrefs

Programs

Formula

a(n) = 18*n^2 - 6*n = 12*A000326(n) = 6*A049450(n) = 4*A062741(n) = 3*A033579(n) = 2*A152743(n).
a(n) = 36*n + a(n-1) - 24 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 12*x*(1 + 2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
a(0)=0, a(1)=12, a(2)=60; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Mar 11 2012
E.g.f.: 6*x*(2 + 3*x)*exp(x). - G. C. Greubel, Aug 29 2016
a(n) = A291582(n) - A195321(n) for n > 0. - Craig Knecht, Sep 13 2017
a(n) = A195321(n) - A008588(n). - Omar E. Pol, Mar 12 2021
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = log(3)/4 - Pi/(12*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) - log(2)/3. (End)

A122016 Riordan array(1, x*(1+2*x)/(1-x)).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 3, 6, 1, 0, 3, 15, 9, 1, 0, 3, 24, 36, 12, 1, 0, 3, 33, 90, 66, 15, 1, 0, 3, 42, 171, 228, 105, 18, 1, 0, 3, 51, 279, 579, 465, 153, 21, 1, 0, 3, 60, 414, 1200, 1500, 828, 210, 24, 1, 0, 3, 69, 576, 2172, 3858, 3258, 1344, 276, 27, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 24 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0,3,-2,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. Rising and falling diagonals are A078010 and A122552.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 3,  1;
  0, 3,  6,   1;
  0, 3, 15,   9,    1;
  0, 3, 24,  36,   12,    1;
  0, 3, 33,  90,   66,   15,   1;
  0, 3, 42, 171,  228,  105,  18,   1;
  0, 3, 51, 279,  579,  465, 153,  21,  1;
  0, 3, 60, 414, 1200, 1500, 828, 210, 24, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[(1-x)/(1-(y+1)*x-2*y*x^2),{x,0,n},{y,0,k}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten (* Stefano Spezia, Dec 27 2023 *)

Formula

Sum_{k=0..n} T(n,k)*x^(n-k) = A026150(n), A102900(n) for x = 1, 2.
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-1). - Philippe Deléham, Sep 25 2006
G.f.: (1-x)/(1-(y+1)*x-2*y*x^2). - Philippe Deléham, Jan 31 2012
Sum_{k=0..n} T(n,k)*x^k = A117575(n+1), A000007(n), A026150(n), A122117(n), A147518(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Jan 31 2012

Extensions

More terms from Stefano Spezia, Dec 27 2023

A152996 9 times pentagonal numbers: 9*n*(3*n-1)/2.

Original entry on oeis.org

0, 9, 45, 108, 198, 315, 459, 630, 828, 1053, 1305, 1584, 1890, 2223, 2583, 2970, 3384, 3825, 4293, 4788, 5310, 5859, 6435, 7038, 7668, 8325, 9009, 9720, 10458, 11223, 12015, 12834, 13680, 14553, 15453, 16380, 17334, 18315, 19323
Offset: 0

Views

Author

Omar E. Pol, Dec 22 2008

Keywords

Crossrefs

Cf. A000326 (pentagonal numbers), A062741 (pentagonal numbers multiplied by 3).

Programs

  • GAP
    List([0..40], n-> 9*n*(3*n-1)/2); # G. C. Greubel, Sep 01 2019
  • Magma
    [9*n*(3*n-1)/2: n in [0..50]];
    
  • Maple
    seq(9*n*(3*n-1)/2, n=0..40); # G. C. Greubel, Sep 01 2019
  • Mathematica
    Table[9n(3n-1)/2, {n,0,40}] (* or *) LinearRecurrence[{3,-3,1}, {0,9,45}, 40] (* Harvey P. Dale, Jan 14 2016 *)
  • PARI
    a(n)=9*n*(3*n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [9*n*(3*n-1)/2 for n in (0..40)] # G. C. Greubel, Sep 01 2019
    

Formula

a(n) = A000326(n)*9 = A062741(n)*3.
G.f.: 9*x*(1+2*x)/(1-x)^3. - Colin Barker, Feb 21 2012
a(0)=0, a(1)=9, a(2)=45, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 14 2016
E.g.f.: 9*x*(2 + 3*x)*exp(x)/2. - G. C. Greubel, Sep 01 2019
Previous Showing 11-20 of 27 results. Next