A097609
Triangle read by rows: T(n,k) is number of Motzkin paths of length n having k horizontal steps at level 0.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 3, 2, 3, 0, 1, 6, 7, 3, 4, 0, 1, 15, 14, 12, 4, 5, 0, 1, 36, 37, 24, 18, 5, 6, 0, 1, 91, 90, 67, 36, 25, 6, 7, 0, 1, 232, 233, 165, 106, 50, 33, 7, 8, 0, 1, 603, 602, 438, 264, 155, 66, 42, 8, 9, 0, 1, 1585, 1586, 1147, 719, 390, 215, 84, 52, 9, 10, 0, 1
Offset: 0
Triangle begins:
1;
0, 1;
1, 0, 1;
1, 2, 0, 1;
3, 2, 3, 0, 1;
6, 7, 3, 4, 0, 1;
Row n has n+1 terms.
T(5,2) = 3 because (HH)UHD,(H)UHD(H) and UHD(HH) are the only Motzkin paths of length 5 with 2 horizontal steps at level 0 (shown between parentheses); here U=(1,1), H=(1,0) and D=(1,-1).
Production matrix begins
0, 1;
1, 0, 1;
1, 1, 0, 1;
1, 1, 1, 0, 1;
1, 1, 1, 1, 0, 1;
1, 1, 1, 1, 1, 0, 1;
1, 1, 1, 1, 1, 1, 0, 1;
1, 1, 1, 1, 1, 1, 1, 0, 1;
1, 1, 1, 1, 1, 1, 1, 1, 0, 1;
... - _Philippe Deléham_, Mar 02 2013
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Jean-Luc Baril, Daniela Colmenares, José L. Ramírez, Emmanuel D. Silva, Lina M. Simbaqueba, and Diana A. Toquica, Consecutive pattern-avoidance in Catalan words according to the last symbol, Univ. Bourgogne (France 2023).
- Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
- Igor Dolinka, James East, and Robert D. Gray, Motzkin monoids and partial Brauer monoids, arXiv preprint arXiv:1512.02279 [math.GR], 2015.
- D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees, Trends in Mathematics 2000, pp 127-139.
-
[((k+1)/(n+1))*(&+[(-1)^(n-j+1)*Binomial(n+1,j)*Binomial(2*j-k-2,j-1): j in [k+1..n+1]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
-
G:=2/(1-2*t*z+z+sqrt(1-2*z-3*z^2)): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: seq(seq(coeff(t*P[n], t^k),k=1..n+1),n=0..12);
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> A005043(n-1)); # Peter Luschny, Oct 09 2022
-
nmax = 12; t[n_, k_] := ((-1)^(n+k)*k*n!*HypergeometricPFQ[{(k+1)/2, k/2, k-n}, {k, k+1}, 4])/(n*k!*(n-k)!); Flatten[ Table[t[n, k], {n, 0, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 14 2011, after Vladimir Kruchinin *)
-
T(n,k) = ((k+1)/(n+1))*sum(j=k+1, n+1, (-1)^(n-j+1)*binomial(n+1,j)* binomial(2*j-k-2,j-1) ); \\ G. C. Greubel, Feb 18 2020
-
[[((k+1)/(n+1))*sum( (-1)^(n-j+1)*binomial(n+1,j)* binomial(2*j-k-2,j-1) for j in (k+1..n+1)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 18 2020
A349812
Triangle read by rows: row 1 is [1]; for n >= 1, row n gives coefficients of expansion of (-1/x + x)*(1/x + 1 + x)^(n-1) in order of increasing powers of x.
Original entry on oeis.org
1, -1, 0, 1, -1, -1, 0, 1, 1, -1, -2, -2, 0, 2, 2, 1, -1, -3, -5, -4, 0, 4, 5, 3, 1, -1, -4, -9, -12, -9, 0, 9, 12, 9, 4, 1, -1, -5, -14, -25, -30, -21, 0, 21, 30, 25, 14, 5, 1, -1, -6, -20, -44, -69, -76, -51, 0, 51, 76, 69, 44, 20, 6, 1, -1, -7, -27, -70, -133, -189, -196, -127, 0, 127, 196, 189, 133, 70, 27, 7, 1
Offset: 0
Triangle begins:
1;
-1, 0, 1;
-1, -1, 0, 1, 1;
-1, -2, -2, 0, 2, 2, 1;
-1, -3, -5, -4, 0, 4, 5, 3, 1;
-1, -4, -9, -12, -9, 0, 9, 12, 9, 4, 1;
-1, -5, -14, -25, -30, -21, 0, 21, 30, 25, 14, 5, 1;
-1, -6, -20, -44, -69, -76, -51, 0, 51, 76, 69, 44, 20, 6, 1;
-1, -7, -27, -70, -133, -189, -196, -127, 0, 127, 196, 189, 133, 70, 27, 7, 1;
...
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
The left half of the triangle is
A026300, the right half is
A064189 (or
A122896). The central (nonzero) column gives the Motzkin numbers
A001006.
A122896
Riordan array (1, (1 - x - sqrt(1 - 2*x - 3*x^2)) / (2*x)), a Riordan array for directed animals. Triangle read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 5, 3, 1, 0, 9, 12, 9, 4, 1, 0, 21, 30, 25, 14, 5, 1, 0, 51, 76, 69, 44, 20, 6, 1, 0, 127, 196, 189, 133, 70, 27, 7, 1, 0, 323, 512, 518, 392, 230, 104, 35, 8, 1, 0, 835, 1353, 1422, 1140, 726, 369, 147, 44, 9, 1
Offset: 0
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 2, 1;
[4] 0, 4, 5, 3, 1;
[5] 0, 9, 12, 9, 4, 1;
[6] 0, 21, 30, 25, 14, 5, 1;
[7] 0, 51, 76, 69, 44, 20, 6, 1;
[8] 0, 127, 196, 189, 133, 70, 27, 7, 1;
[9] 0, 323, 512, 518, 392, 230, 104, 35, 8, 1.
Row sums are
A005773, number of directed animals of size n.
-
T := proc(n,k) option remember;
if k=0 then return 0^n fi; if k>n then return 0 fi;
T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) end:
for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Aug 17 2016
# Uses function PMatrix from A357368.
PMatrix(10, n -> simplify(hypergeom([1 -n/2, -n/2+1/2], [2], 4))); # Peter Luschny, Oct 08 2022
-
T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
-
# uses[riordan_array from A256893]
riordan_array(1, (1-x-sqrt(1-2*x-3*x^2))/(2*x), 11) # Peter Luschny, Aug 17 2016
A330799
Evaluation of the Motzkin polynomials at 1/2 and normalized with 2^n.
Original entry on oeis.org
1, 3, 13, 59, 285, 1419, 7245, 37659, 198589, 1059371, 5705517, 30976571, 169338781, 931239243, 5147825421, 28587660123, 159406327677, 892113040491, 5009160335085, 28210229053563, 159304938535773, 901845743050635, 5117144607546573, 29096321095698843, 165765778648482621
Offset: 0
-
m:=30;
R:=PowerSeriesRing(Rationals(), m+2);
A330799:= func< n | Coefficient(R!( 2/(1-4*x+Sqrt((1-6*x)*(1+2*x))) ), n) >;
[A330799(n): n in [0..m]]; // G. C. Greubel, Sep 14 2023
-
a := proc(n) option remember; if n < 3 then return [1, 3, 13][n+1] fi;
(-84*(n - 2)*a(n-3) - 2*(8*n + 5)*a(n-2) + (11*n + 5)*a(n-1))/(n + 1) end:
seq(a(n), n=0..24);
# Alternative:
gf := 2/(1 - 4*x + sqrt((1 - 6*x)*(2*x + 1))):
ser := series(gf, x, 30): seq(coeff(ser,x,n), n=0..24);
# Or:
series((x^2+x)/(7*x^2+4*x+1), x, 30): gfun:-seriestoseries(%, 'revogf'):
convert(%, polynom) / x: seq(coeff(%, x, n), n=0..24);
-
With[{C = Binomial}, A064189[n_, k_] := Sum[C[n, j]* (C[n-j, j+k] - C[n-j, j+k+2]), {j, 0, n}]];
a[n_] := 2^n*Sum[A064189[n, k]/2^k, {k, 0, n}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 25 2022 *)
(* Second program *)
A330799[n_]:= Coefficient[Series[2/(1-4*x+Sqrt[(1-6*x)*(1+2*x)]), {x, 0,50}], x, n]; Table[A330799[n], {n,0,30}] (* G. C. Greubel, Sep 14 2023 *)
-
R. = PowerSeriesRing(QQ)
f = (x^2 + x)/(7*x^2 + 4*x+1)
f.reverse().shift(-1).list()
A097357
For definition see Comments lines.
Original entry on oeis.org
1, 2, 1, 3, 3, 4, 3, 6, 3, 6, 3, 7, 5, 8, 5, 11, 3, 6, 3, 9, 9, 12, 9, 16, 5, 10, 5, 13, 11, 16, 11, 22, 3, 6, 3, 9, 9, 12, 9, 18, 9, 18, 9, 21, 15, 24, 15, 31, 5, 10, 5, 15, 15, 20, 15, 28, 11, 22, 11, 27, 21, 32, 21, 43, 3, 6, 3, 9, 9, 12, 9, 18, 9, 18, 9, 21, 15, 24, 15, 33, 9, 18, 9, 27, 27
Offset: 1
From _Philippe Deléham_, Apr 28 2007: (Start)
Table b_n(m), n >= 1, m >= 0, begins:
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, ...
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, ...
0, 1, 0, 1, 0, 1, 0, 0, 0, 0, ...
0, 1, 0, 1, 0, 1, 1, 0, 0, 0, ...
0, 1, 0, 1, 0, 0, 0, 1, 0, 0, ...
0, 1, 0, 1, 1, 0, 1, 1, 1, 0, ...
See A128810 for another version. (End)
A167630
Riordan array (1/(1-x),xm(x)) where m(x) is the g.f. of Motzkin numbers A001006.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 17, 20, 13, 5, 1, 1, 38, 50, 38, 19, 6, 1, 1, 89, 126, 107, 63, 26, 7, 1, 1, 216, 322, 296, 196, 96, 34, 8, 1, 1, 539, 834, 814, 588, 326, 138, 43, 9, 1, 1, 1374, 2187, 2236, 1728, 1052, 507, 190, 53, 10, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 8, 8, 4, 1;
1, 17, 20, 13, 5, 1;
1, 38, 50, 38, 19, 6, 1;
...
-
T:= proc(n, k) option remember; `if`(k=0, 1,
`if`(k>n, 0, T(n-1, k-1)+T(n-1, k)+T(n-1, k+1)))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Apr 20 2018
-
T[, 0] = T[n, n_] = 1;
T[n_, k_] /; 0, ] = 0;
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2019 *)
A330800
Evaluation of the Motzkin polynomials at -1/2 and normalized with (-2)^n.
Original entry on oeis.org
1, -1, 5, -17, 77, -345, 1653, -8097, 40733, -208553, 1084421, -5708785, 30370861, -163019641, 881790357, -4801746753, 26302052925, -144825094473, 801155664933, -4450426297233, 24815385947469, -138842668857369, 779247587235765, -4385948395419873, 24750623835149661
Offset: 0
-
I:=[1,-1,5]; [n le 3 select I[n] else ((6-n)*Self(n-1) + 6*(4*n-9)*Self(n-2) -36*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Sep 13 2023
-
a := proc(n) option remember; if n < 3 then return [1, -1, 5][n+1] fi;
(-36*(n - 2)*a(n-3) + 6*(4*n - 5)*a(n-2) - (n - 5)*a(n-1))/(n + 1) end:
seq(a(n), n=0..24);
# Alternative:
gf := 2/(sqrt(4*x - 12*x^2 + 1) + 1):
ser := series(gf, x, 30): seq(coeff(ser,x,n), n=0..24);
# Or:
series((x^2+x)/(3*x^2+1), x, 30): gfun:-seriestoseries(%, 'revogf'):
convert(%, polynom) / x: seq(coeff(%, x, n), n=0..24);
-
A330800[n_]:= Coefficient[Series[2/(Sqrt[4*x-12*x^2+1] +1), {x,0,50}], x, n]; Table[A330800[n], {n, 0, 30}] (* G. C. Greubel, Sep 13 2023 *)
-
R. = PowerSeriesRing(QQ)
f = (x^2 + x)/(3*x^2 + 1)
f.reverse().shift(-1).list()
A342912
a(n) = [x^n] (1 - 2*x - sqrt((1 - 3*x)/(1 + x)))/(2*x^3).
Original entry on oeis.org
1, 1, 3, 6, 15, 36, 91, 232, 603, 1585, 4213, 11298, 30537, 83097, 227475, 625992, 1730787, 4805595, 13393689, 37458330, 105089229, 295673994, 834086421, 2358641376, 6684761125, 18985057351, 54022715451, 154000562758, 439742222071, 1257643249140, 3602118427251
Offset: 0
The diagonal sums of the Motzkin triangle
A064189 (with the Motzkin numbers
A001006 as first column), the row sums of
A020474, and a shifted version of the Riordan numbers
A005043.
-
gf := (1 - 2*x - sqrt((1 - 3*x)/(1 + x)))/(2*x^3): ser := series(gf, x, 36):
seq(coeff(ser, x, n), n = 0..30);
a := proc(n) option remember; `if`(n < 3, [1, 1, 3][n + 1],
((2*a(n - 1) + 3*a(n - 2))*(n + 1))/(n + 3)) end: seq(a(n), n=0..30);
-
a[n_] := (-1)^n*HypergeometricPFQ[{1/2, -2 - n}, {2}, 4]
Table[a[n], {n, 0, 30}]
-
def rnum():
a, b, n = 1, 3, 3
yield 1
yield 1
while True:
yield b
n += 1
a, b = b, (n*(3*a + 2*b))//(n + 2)
A342912 = rnum()
print([next(A342912) for _ in range(31)])
A356692
Pascal-like triangle, where each entry is the sum of the four entries above it starting with 1 at the top.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 4, 6, 6, 4, 10, 16, 20, 16, 10, 26, 46, 62, 62, 46, 26, 72, 134, 196, 216, 196, 134, 72, 206, 402, 618, 742, 742, 618, 402, 206, 608, 1226, 1968, 2504, 2720, 2504, 1968, 1226, 608, 1834, 3802, 6306, 8418, 9696, 9696, 8418, 6306, 3802, 1834, 5636, 11942, 20360, 28222, 34116, 36228, 34116, 28222, 20360, 11942, 5636
Offset: 0
T(4,0) = 10 because it is the sum of T(3,-2), T(3,-1), T(3,0), and T(3,1) which gives 0+0+4+6 = 10.
Triangle begins:
1
1 1
2 2 2
4 6 6 4
10 16 20 16 10
26 46 62 62 46 26
...
Column k=0 and also main diagonal give
A356832.
-
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, add(T(n-1,j), j=k-2..k+1)))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Aug 28 2022
-
T[0, 0] = 1; T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0,
T[n - 1, k - 2] + T[n - 1, k - 1] + T[n - 1, k] + T[n - 1, k + 1]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten
A171488
Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A005773(n+1)= 1,2,5,13,35,96,267,...
Original entry on oeis.org
1, 2, 1, 5, 4, 1, 13, 14, 6, 1, 35, 46, 27, 8, 1, 96, 147, 107, 44, 10, 1, 267, 462, 396, 204, 65, 12, 1, 750, 1437, 1404, 858, 345, 90, 14, 1, 2123, 4438, 4835, 3388, 1625, 538, 119, 16, 1, 6046, 13637, 16305, 12802, 7072, 2805, 791, 152, 18, 1
Offset: 0
Triangle T(n,k) (0<=k<=n) begins:
1;
2, 1;
5, 4, 1;
13, 14, 6, 1;
35, 46, 27, 8, 1;
96, 147, 107, 44, 10, 1;
...
-
T(n,k)=((k+1)*sum(binomial(2*j+k,j)*(-1)^j*3^(n-j-k)*binomial(n+1,j+k+1),j,0,n-k))/(n+1); /* Vladimir Kruchinin Sep 30 2020 */
Comments