cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 59 results. Next

A232354 Numbers k that divide sigma(k^2) where sigma is the sum of divisors function (A000203).

Original entry on oeis.org

1, 39, 793, 2379, 7137, 13167, 76921, 78507, 230763, 238887, 549549, 692289, 863577, 1491633, 1672209, 2076867, 4317885, 7615179, 8329831, 10441431, 23402223, 24989493, 37776123, 53306253, 53695813, 55871145, 74968479, 83766969, 133854435, 144688401, 161087439, 189437391
Offset: 1

Views

Author

Alex Ratushnyak, Nov 22 2013

Keywords

Comments

Squarefree terms are: 1, 39, 793, 2379, 76921, 230763, 8329831, 24989493, 53695813, 161087439, ... Quotients are: 1, 61, 873, 3783, 11737, 26543, 85563, 141911, 370773, 417263, 1155561, ... - Michel Marcus, Nov 23 2013
Many terms are also in sequence A069520, cf. A232067 for the intersection of these two sequences. - M. F. Hasler, Nov 24 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Divisible[DivisorSigma[1, #^2], #] &] (* Alonso del Arte, Dec 06 2013 *)
  • PARI
    isok(n) = (sigma(n^2) % n) == 0; \\ Michel Marcus, Nov 23 2013

Formula

A065764(a(n)) mod a(n) = 0.

A346867 Sum of divisors of the numbers that have middle divisors.

Original entry on oeis.org

1, 3, 7, 12, 15, 13, 28, 24, 31, 39, 42, 60, 31, 56, 72, 63, 48, 91, 90, 96, 78, 124, 57, 93, 120, 120, 168, 104, 127, 144, 144, 195, 96, 186, 121, 224, 180, 234, 112, 252, 171, 156, 217, 210, 280, 216, 248, 182, 360, 133, 312, 255, 252, 336, 240, 336, 168, 403, 372, 234
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram the width is >= 1.
Also the width on the main diagonal equals the number of middle divisors.
So knowing this characteristic shape we can know if a number has middle divisors (or not) and the number of them just by looking at the diagram, even ignoring the concept of middle divisors.
Therefore we can see a geometric pattern of the distribution of the numbers with middle divisors in the stepped pyramid described in A245092.
For the definition of "width" see A249351.

Examples

			a(4) = 12 because the sum of divisors of the fourth number that has middle divisors (i.e., 6) is 1 + 2 + 3 + 6 = 12.
On the other hand we can see that in the main diagonal of every diagram the width is >= 1 as shown below.
Illustration of initial terms:
m(n) = A071562(n).
.
   n   m(n) a(n)   Diagram
.                  _ _   _   _   _ _     _     _ _   _   _       _
   1    1    1    |_| | | | | | | | |   | |   | | | | | | |     | |
   2    2    3    |_ _|_| | | | | | |   | |   | | | | | | |     | |
                   _ _|  _|_| | | | |   | |   | | | | | | |     | |
   3    4    7    |_ _ _|    _|_| | |   | |   | | | | | | |     | |
                   _ _ _|  _|  _ _|_|   | |   | | | | | | |     | |
   4    6   12    |_ _ _ _|  _| |  _ _ _| |   | | | | | | |     | |
                   _ _ _ _| |_ _|_|    _ _|   | | | | | | |     | |
   5    8   15    |_ _ _ _ _|  _|     |  _ _ _|_| | | | | |     | |
   6    9   13    |_ _ _ _ _| |      _|_| |  _ _ _|_| | | |     | |
                              |  _ _|    _| |    _ _ _|_| |     | |
                   _ _ _ _ _ _| |  _|  _|  _|   |  _ _ _ _|     | |
   7   12   28    |_ _ _ _ _ _ _| |_ _|  _|  _ _| |    _ _ _ _ _| |
                                  |  _ _|  _|    _|   |    _ _ _ _|
                   _ _ _ _ _ _ _ _| |     |     |  _ _|   |
   8   15   24    |_ _ _ _ _ _ _ _| |  _ _|  _ _|_|       |
   9   16   31    |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|
                   _ _ _ _ _ _ _ _ _| | |     |      _|
  10   18   39    |_ _ _ _ _ _ _ _ _ _| |  _ _|    _|
                   _ _ _ _ _ _ _ _ _ _| | |       |
  11   20   42    |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|
                                          | |
                                          | |
                   _ _ _ _ _ _ _ _ _ _ _ _| |
  12   24   60    |_ _ _ _ _ _ _ _ _ _ _ _ _|
.
The n-th diagram has the property that at least it shares a vertex with the (n+1)-st diagram.
		

Crossrefs

Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346866 (of second hexagonal numbers), A346868 (of numbers with no middle divisors).

Programs

  • Mathematica
    s[n_] := Module[{d = Divisors[n]}, If[AnyTrue[d, Sqrt[n/2] <= # < Sqrt[n*2] &], Plus @@ d, 0]]; Select[Array[s, 150], # > 0 &] (* Amiram Eldar, Aug 19 2021 *)
  • PARI
    is(n) = fordiv(n, d, if(d^2>=n/2 && d^2<2*n, return(1))); 0 ; \\ A071562
    apply(sigma, select(is, [1..200])) \\ Michel Marcus, Aug 19 2021

Formula

a(n) = A000203(A071562(n)).

A378999 Number of trailing 1-bits in the binary representation of sigma(n^2).

Original entry on oeis.org

1, 3, 1, 5, 5, 2, 1, 7, 1, 1, 1, 2, 3, 4, 2, 9, 2, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 3, 1, 1, 11, 1, 1, 3, 3, 7, 2, 2, 1, 2, 2, 1, 2, 3, 5, 1, 2, 1, 2, 3, 1, 4, 2, 2, 3, 1, 1, 1, 1, 3, 3, 1, 13, 1, 3, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 6, 3, 1, 3, 2, 2, 2, 3, 1, 2, 6, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Crossrefs

Programs

  • Mathematica
    IntegerExponent[DivisorSigma[1, Range[100]^2] + 1, 2] (* Paolo Xausa, Dec 19 2024 *)
  • PARI
    A378999(n) = valuation(sigma(n^2)+1,2);

Formula

a(n) = A378998(A000290(n)).
a(n) = A007814(1+A065764(n)). [the 2-adic valuation of 1+sigma(n^2)]

A074465 a(n) = gcd(n^2, sigma(n^2), phi(n^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 39, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 39, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 11, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Comments

a(n) is odd because sigma(n^2) is odd;.

Examples

			For n=14: gcd(196,399,84) = 7 = a(14).
		

Crossrefs

Programs

  • Mathematica
    Table[Apply[GCD, {w^2, DivisorSigma[1, w^2], EulerPhi[w^2]}], {w, 1, 128}]
  • PARI
    A074465(n) = gcd([n^2, sigma(n^2), eulerphi(n^2)]); \\ Antti Karttunen, Sep 07 2018

Formula

a(n) = A074389(n^2).

A081339 Numbers n such that sigma(n^2) modulo 4 = 1.

Original entry on oeis.org

1, 3, 7, 9, 10, 11, 19, 20, 21, 23, 25, 26, 27, 30, 31, 33, 34, 40, 43, 47, 49, 52, 57, 58, 59, 60, 63, 65, 67, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 85, 90, 93, 99, 102, 103, 104, 106, 107, 110, 116, 120, 121, 122, 127, 129, 131, 133, 136, 139, 140, 141, 145
Offset: 1

Views

Author

Benoit Cloitre, Apr 20 2003

Keywords

Comments

Numbers n such that the sum of exponents of primes == 1 (mod 4) in the prime factorization of n is not congruent to n mod 2. - Robert Israel, Jan 22 2017

Crossrefs

Contains A004614.

Programs

  • Maple
    filter:= proc(n) local F, t;
      F:= select(t -> t[1] mod 4 = 1, ifactors(n)[2]);
      (add(t[2],t=F) - n) mod 2 = 1;
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 22 2017
  • Mathematica
    Select[Range[150],Mod[DivisorSigma[1,#^2],4]==1&] (* Harvey P. Dale, Apr 07 2012 *)
  • PARI
    isok(n) = (sigma(n^2) % 4) == 1; \\ Michel Marcus, Jan 22 2017

A097022 a(n) = (sigma(2n^2)-3)/6.

Original entry on oeis.org

0, 2, 6, 10, 15, 32, 28, 42, 60, 77, 66, 136, 91, 142, 201, 170, 153, 302, 190, 325, 370, 332, 276, 552, 390, 457, 546, 598, 435, 1007, 496, 682, 864, 767, 883, 1270, 703, 952, 1189, 1317, 861, 1852, 946, 1396, 1875, 1382, 1128, 2216, 1400, 1952, 1995, 1921
Offset: 1

Views

Author

Labos Elemer, Aug 24 2004

Keywords

Comments

Crossrefs

Programs

  • Mathematica
    Table[(DivisorSigma[1,2n^2]-3)/6,{n,60}] (* Harvey P. Dale, Sep 12 2022 *)
  • PARI
    a(n) = (sigma(2*n^2) - 3)/6; \\ Michel Marcus, Dec 20 2013

Formula

a(n) = (A065765(n)-3)/6 = A000203(A001105(n) - 3)/6.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*zeta(3)/Pi^2 = 0.243587... . - Amiram Eldar, Oct 28 2022

A195735 a(n) = 2*sigma(n^2) - sigma(n)^2.

Original entry on oeis.org

1, 5, 10, 13, 26, 38, 50, 29, 73, 110, 122, 22, 170, 222, 230, 61, 290, 173, 362, 158, 458, 566, 530, -298, 601, 798, 586, 398, 842, 458, 962, 125, 1154, 1382, 1230, -779, 1370, 1734, 1622, -226, 1682, 1158, 1850, 1190, 1418, 2558, 2210, -2090, 2353, 2285, 2798, 1742, 2810, 902, 3062, 78, 3506, 4094, 3482, -3238
Offset: 1

Views

Author

Paul D. Hanna, Sep 22 2011

Keywords

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 10*x^3/3 + 13*x^4/4 + 26*x^5/5 + 38*x^6/6 +...
where exp(L(x)) = 1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 22*x^5 + 40*x^6 + 72*x^7 + 123*x^8 + 215*x^9 + 363*x^10 +...+ A195734(n)*x^n +...
		

Crossrefs

Programs

  • Maple
    with(numtheory); A195735:=n->2*sigma(n^2) - sigma(n)^2; seq(A195735(n), n=1..100); # Wesley Ivan Hurt, Mar 04 2014
  • Mathematica
    Table[2 DivisorSigma[1, n^2] - DivisorSigma[1, n]^2, {n, 100}] (* Wesley Ivan Hurt, Mar 04 2014 *)
  • PARI
    {a(n)=2*sigma(n^2) - sigma(n)^2}

Formula

a(n) < 0 for n found in A067807.
Equals the logarithmic derivative of A195734.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (10/Pi^2-5/6)*zeta(3) = 0.216224196369... . - Amiram Eldar, Mar 17 2024

A224339 Absolute difference between sum of odd divisors of n^2 and sum of even divisors of n^2.

Original entry on oeis.org

1, 5, 13, 29, 31, 65, 57, 125, 121, 155, 133, 377, 183, 285, 403, 509, 307, 605, 381, 899, 741, 665, 553, 1625, 781, 915, 1093, 1653, 871, 2015, 993, 2045, 1729, 1535, 1767, 3509, 1407, 1905, 2379, 3875, 1723, 3705, 1893, 3857, 3751, 2765, 2257, 6617, 2801, 3905, 3991, 5307
Offset: 1

Views

Author

Paul D. Hanna, Apr 03 2013

Keywords

Comments

Multiplicative because A113184 is.
Logarithmic derivative of A224340.

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 31*x^5/5 + 65*x^6/6 + 57*x^7/7 + 125*x^8/8 + 121*x^9/9 + 155*x^10/10 +...
where
exp(L(x)) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 64*x^6 + 120*x^7 + 236*x^8 + 434*x^9 + 805*x^10 +...+ A224340(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    dif[n_]:=Module[{divs=Divisors[n^2],od,ev},od=Total[Select[divs,OddQ]];ev=Total[Select[divs,EvenQ]];Abs[od-ev]]; Array[dif,60] (* Harvey P. Dale, Jul 16 2015 *)
    f[p_, e_] := If[p == 2, 2^(2*e + 1) - 3, (p^(2*e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 01 2022 *)
  • PARI
    {a(n)=if(n<1, 0, (-1)^n*sumdiv(n^2, d, (-1)^d*d))}
    for(n=1,64,print1(a(n),", "))
    
  • PARI
    a(n) = if(n%2, sigma(n^2), 4*sigma(n^2/2) - sigma(n^2)) \\ Andrew Howroyd, Jul 28 2018

Formula

a(n) = (-1)^n * Sum_{d|n^2} (-1)^d * d.
a(n) = A113184(n^2).
a(n) = sigma(n^2) for odd n; a(n) = 4*sigma(n^2/2) - sigma(n^2) for even n. - Andrew Howroyd, Jul 28 2018
Multiplicative with a(p^e) = 2^(2*e+1)-3 if p=2, and (p^(2*e+1)-1)/(p-1) otherwise. - Amiram Eldar, Jul 01 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = (9*zeta(3))/(2*Pi^2) = 0.548072... . - Amiram Eldar, Oct 13 2022

A232703 Numbers k that divide sigma(k) + sigma(k^2).

Original entry on oeis.org

1, 2, 185, 113125, 535350201, 71373089217, 82225037115, 156231750533, 268821356379
Offset: 1

Views

Author

Alex Ratushnyak, Nov 28 2013

Keywords

Comments

a(10) > 10^12. - Giovanni Resta, Jun 10 2016

Crossrefs

Cf. A000203 (sigma(n) = sum of divisors of n).

Programs

  • Mathematica
    Select[Range[150000], Mod[Plus @@ DivisorSigma[1, {#, #^2}], #] == 0 &] (* Giovanni Resta, Jun 10 2016 *)

Extensions

a(6)-a(9) from Giovanni Resta, Jun 10 2016

A263325 a(n) = sigma(n)*pi(n^2), where sigma(n) is the sum of all (positive) divisors of n, and pi(x) is the number of primes not exceeding x.

Original entry on oeis.org

0, 6, 16, 42, 54, 132, 120, 270, 286, 450, 360, 952, 546, 1056, 1152, 1674, 1098, 2574, 1440, 3276, 2720, 3312, 2376, 6300, 3534, 5124, 5160, 7672, 4380, 11088, 5184, 10836, 8688, 10314, 9600, 19110, 8322, 13680, 13440, 22590, 11046, 26304, 12452, 24780, 23868, 22968, 15792, 42408, 20349, 34131
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 14 2015

Keywords

Comments

Conjecture: (i) All the terms of this sequence are pairwise distinct.
(ii) All the numbers sigma(n)*pi(n*(n+1)) (n = 1,2,3,...) are pairwise distinct.
(iii) All the numbers n*sigma(n)*pi(n^2) (n = 1,2,3,...) are pairwise distinct, and all the numbers sigma(n^2)*pi(n^2) (n = 1,2,3,...) are also pairwise distinct.
(iv) All the numbers n*phi(n)*sigma(n^2) = phi(n^2)*sigma(n^2) (n = 1,2,3,...) are pairwise distinct, where phi(.) is Euler's totient function.
We have verified that the terms a(n) (n = 1..4*10^5) are indeed pairwise distinct.
See also A263319 for a similar conjecture.

Examples

			a(1) = 0 since sigma(1)*pi(1^2) = 1*0 = 0.
a(2) = 6 since sigma(2)*pi(2^2) = 3*2 = 6.
		

Crossrefs

Programs

  • Magma
    [#PrimesUpTo(n^2)*SumOfDivisors(n): n in [1..80]]; // Vincenzo Librandi, Oct 15 2015
  • Mathematica
    a[n_]:=a[n]=DivisorSigma[1,n]*PrimePi[n^2]
    Do[Print[n," ",a[n]],{n,1,50}]
  • PARI
    a(n) = sigma(n)*primepi(n^2); \\ Michel Marcus, Oct 15 2015
    
Previous Showing 21-30 of 59 results. Next