cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A067726 a(n) = 6*n^2 + 12*n.

Original entry on oeis.org

18, 48, 90, 144, 210, 288, 378, 480, 594, 720, 858, 1008, 1170, 1344, 1530, 1728, 1938, 2160, 2394, 2640, 2898, 3168, 3450, 3744, 4050, 4368, 4698, 5040, 5394, 5760, 6138, 6528, 6930, 7344, 7770, 8208, 8658, 9120, 9594, 10080, 10578, 11088, 11610
Offset: 1

Views

Author

Robert G. Wilson v, Feb 05 2002

Keywords

Comments

Positive numbers k such that 6*(6 + k) is a perfect square.

Crossrefs

Cf. numbers k such that k*(k + m) is a perfect square: A028560 (k=9), A067728 (k=8), A067727 (k=7), A067724 (k=5), A028347 (k=4), A067725 (k=3), A054000 (k=2), A005563 (k=1).

Programs

Formula

G.f.: 6*x*(3 - x)/(1 - x)^3. - Vincenzo Librandi, Jul 08 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
E.g.f.: 6*x*(3 + x)*exp(x). - G. C. Greubel, Sep 01 2019
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/24. (End)
a(n) = A003215(2*n) - A003154(n). - Leo Tavares, May 20 2023
a(n) = 6*A005563(n). - Hugo Pfoertner, May 24 2023

A140678 a(n) = n*(3*n + 10).

Original entry on oeis.org

0, 13, 32, 57, 88, 125, 168, 217, 272, 333, 400, 473, 552, 637, 728, 825, 928, 1037, 1152, 1273, 1400, 1533, 1672, 1817, 1968, 2125, 2288, 2457, 2632, 2813, 3000, 3193, 3392, 3597, 3808, 4025, 4248, 4477, 4712, 4953, 5200, 5453, 5712
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n (3 n + 10), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 13, 32}, 50] (* Harvey P. Dale, Jun 05 2012 *)
  • PARI
    a(n)=n*(3*n+10) \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 3*n^2 + 10*n.
a(n) = 6*n + a(n-1) + 7, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(13 - 7*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=13, a(2)=32. - Harvey P. Dale, Jun 05 2012
E.g.f.: (3*x^2 + 13*x)*exp(x). - G. C. Greubel, Jul 20 2017

A140679 a(n) = n*(3*n+14).

Original entry on oeis.org

0, 17, 40, 69, 104, 145, 192, 245, 304, 369, 440, 517, 600, 689, 784, 885, 992, 1105, 1224, 1349, 1480, 1617, 1760, 1909, 2064, 2225, 2392, 2565, 2744, 2929, 3120, 3317, 3520, 3729, 3944, 4165, 4392, 4625, 4864, 5109, 5360, 5617, 5880, 6149, 6424, 6705, 6992
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Examples

			a(1)=6*1+0+11=17; a(2)=6*2+17+11=40; a(3)=6*3+40+11=69. See 2nd formula.
		

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 14*n.
a(n) = a(n-1) + 6*n + 11, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(1)=0, a(2)=17, a(3)=40. - Harvey P. Dale, Apr 29 2011
E.g.f.: (3*x^2 + 17*x)*exp(x). - G. C. Greubel, Jul 20 2017

A140680 a(n) = n*(3*n+16).

Original entry on oeis.org

0, 19, 44, 75, 112, 155, 204, 259, 320, 387, 460, 539, 624, 715, 812, 915, 1024, 1139, 1260, 1387, 1520, 1659, 1804, 1955, 2112, 2275, 2444, 2619, 2800, 2987, 3180, 3379, 3584, 3795, 4012, 4235, 4464, 4699, 4940, 5187, 5440, 5699
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 16*n.
a(n) = 6*n + a(n-1) + 13 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
E.g.f.: (3*x^2 + 19*x)*exp(x). - G. C. Greubel, Jul 20 2017

A140689 a(n) = n*(3*n + 20).

Original entry on oeis.org

0, 23, 52, 87, 128, 175, 228, 287, 352, 423, 500, 583, 672, 767, 868, 975, 1088, 1207, 1332, 1463, 1600, 1743, 1892, 2047, 2208, 2375, 2548, 2727, 2912, 3103, 3300, 3503, 3712, 3927, 4148, 4375, 4608, 4847, 5092, 5343, 5600, 5863
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 20*n.
a(n) = a(n-1) + 6*n + 17 (with a(0)=0). - Vincenzo Librandi, Dec 15 2010
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3), with a(0)=0, a(1)=23, a(2)=52. - Harvey P. Dale, Apr 29 2016
From G. C. Greubel, Jul 21 2017: (Start)
G.f.: x*(23 - 17*x)/(1 - x)^3.
E.g.f.: x*(3*x + 23)*exp(x). (End)

A105020 Array read by antidiagonals: row n (n >= 0) contains the numbers m^2 - n^2, m >= n+1.

Original entry on oeis.org

1, 3, 4, 5, 8, 9, 7, 12, 15, 16, 9, 16, 21, 24, 25, 11, 20, 27, 32, 35, 36, 13, 24, 33, 40, 45, 48, 49, 15, 28, 39, 48, 55, 60, 63, 64, 17, 32, 45, 56, 65, 72, 77, 80, 81, 19, 36, 51, 64, 75, 84, 91, 96, 99, 100, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 121
Offset: 0

Views

Author

Keywords

Comments

A "Goldbach Conjecture" for this sequence: when there are n terms between consecutive odd integers (2n+1) and (2n+3) for n > 0, at least one will be the product of 2 primes (not necessarily distinct). Example: n=3 for consecutive odd integers a(7)=7 and a(11)=9 and of the 3 sequence entries a(8)=12, a(9)=15 and a(10)=16 between them, one is the product of 2 primes a(9)=15=3*5. - Michael Hiebl, Jul 15 2007
A024352 gives distinct values in the array, minus the first row (1, 4, 9, 16, etc.). a(n) gives all solutions to the equation x^2 + xy = n, with y mod 2 = 0, x > 0, y >= 0. - Andrew S. Plewe, Oct 19 2007
Alternatively, triangular sequence of coefficients of Dynkin diagram weights for the Cartan groups C_n: t(n,m) = m*(2*n - m). Row sums are A002412. - Roger L. Bagula, Aug 05 2008

Examples

			Array begins:
  1  4  9 16 25 36  49  64  81 100 ...
  3  8 15 24 35 48  63  80  99 120 ...
  5 12 21 32 45 60  77  96 117 140 ...
  7 16 27 40 55 72  91 112 135 160 ...
  9 20 33 48 65 84 105 128 153 180 ...
  ...
Triangle begins:
   1;
   3,  4;
   5,  8,  9;
   7, 12, 15, 16;
   9, 16, 21, 24, 25;
  11, 20, 27, 32, 35, 36;
  13, 24, 33, 40, 45, 48, 49;
  15, 28, 39, 48, 55, 60, 63, 64;
  17, 32, 45, 56, 65, 72, 77, 80, 81;
  19, 36, 51, 64, 75, 84, 91, 96, 99, 100;
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Programs

  • Magma
    [(k+1)*(2*n-k+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 15 2023
    
  • Mathematica
    t[n_, m_]:= (n^2 - m^2); Flatten[Table[t[i, j], {i,12}, {j,i-1,0,-1}]]
    (* to view table *) Table[t[i, j], {j,0,6}, {i,j+1,10}]//TableForm (* Robert G. Wilson v, Jul 11 2005 *)
    Table[(k+1)*(2*n-k+1), {n,0,15}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 05 2008 *)
  • SageMath
    def A105020(n,k): return (k+1)*(2*n-k+1)
    flatten([[A105020(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Mar 15 2023

Formula

a(n) = r^2 - (r^2 + r - m)^2/4, where r = round(sqrt(m)) and m = 2*n+2. - Wesley Ivan Hurt, Sep 04 2021
a(n) = A128076(n+1) * A105020(n+1). - Wesley Ivan Hurt, Jan 07 2022
From G. C. Greubel, Mar 15 2023: (Start)
Sum_{k=0..n} T(n, k) = A002412(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*((1+(-1)^n)*A000384((n+2)/2) - (1- (-1)^n)*A000384((n+1)/2)). (End)

Extensions

More terms from Robert G. Wilson v, Jul 11 2005

A067705 a(n) = 11*n^2 + 22*n.

Original entry on oeis.org

33, 88, 165, 264, 385, 528, 693, 880, 1089, 1320, 1573, 1848, 2145, 2464, 2805, 3168, 3553, 3960, 4389, 4840, 5313, 5808, 6325, 6864, 7425, 8008, 8613, 9240, 9889, 10560, 11253, 11968, 12705, 13464, 14245, 15048, 15873, 16720, 17589, 18480, 19393, 20328, 21285
Offset: 1

Views

Author

Robert G. Wilson v, Feb 05 2002

Keywords

Comments

Numbers k such that 11*(11 + k) is a perfect square.

Crossrefs

Cf. A067724, A067725, A067726, A067727, A067728 (if 11 is replaced by 3, 5, 6, 7, 8 respectively), A067707 (12).
Cf. A005563.

Programs

  • Magma
    [11*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
  • Mathematica
    Select[ Range[20000], IntegerQ[ Sqrt[ 11(11 + # )]] & ]
    CoefficientList[Series[11 (3 - x)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 07 2012 *)
  • PARI
    a(n)=11*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

From Vincenzo Librandi, Jul 07 2012: (Start)
G.f.: 11*x*(3-x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Jan 28 2025: (Start)
E.g.f.: 11*exp(x)*x*(3 + x).
a(n) = 11*A005563(n). (End)

A271723 Numbers k such that 3*k - 8 is a square.

Original entry on oeis.org

3, 4, 8, 11, 19, 24, 36, 43, 59, 68, 88, 99, 123, 136, 164, 179, 211, 228, 264, 283, 323, 344, 388, 411, 459, 484, 536, 563, 619, 648, 708, 739, 803, 836, 904, 939, 1011, 1048, 1124, 1163, 1243, 1284, 1368, 1411, 1499, 1544, 1636, 1683, 1779, 1828, 1928, 1979, 2083, 2136, 2244, 2299
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 13 2016

Keywords

Comments

Square roots of resulting squares gives A001651. - Ray Chandler, Apr 14 2016

Examples

			a(1) = 3 because 3*3 - 8 = 1^2.
		

Crossrefs

Cf. A001651.
Cf. numbers n such that 3*n + k is a square: this sequence (k=-8), A120328 (k=-6), A271713 (k=-5), A056107 (k=-3), A257083 (k=-2), A033428 (k=0), A001082 (k=1), A080663 (k=3), A271675 (k=4), A100536 (k=6), A271741 (k=7), A067725 (k=9).

Programs

  • Magma
    [n: n in [1..2400] | IsSquare(3*n-8)];
    
  • Maple
    seq(seq(((3*m+k)^2+8)/3, k=1..2),m=0..50); # Robert Israel, Dec 05 2016
  • Mathematica
    Select[Range@ 2400, IntegerQ@ Sqrt[3 # - 8] &] (* Bruno Berselli, Apr 14 2016 *)
    LinearRecurrence[{1,2,-2,-1,1},{3,4,8,11,19},60] (* Harvey P. Dale, Oct 02 2020 *)
  • Python
    from gmpy2 import is_square
    [n for n in range(3000) if is_square(3*n-8)] # Bruno Berselli, Dec 05 2016
    
  • Python
    [(6*(n-1)*n-(2*n-1)*(-1)**n+23)/8 for n in range(1, 60)] # Bruno Berselli, Dec 05 2016

Formula

From Ilya Gutkovskiy, Apr 13 2016: (Start)
G.f.: x*(3 + x - 2*x^2 + x^3 + 3*x^4)/((1 - x)^3*(1 + x)^2).
a(n) = (6*(n - 1)*n - (2*n - 1)*(-1)^n + 23)/8. (End)

A279895 a(n) = n*(5*n + 11)/2.

Original entry on oeis.org

0, 8, 21, 39, 62, 90, 123, 161, 204, 252, 305, 363, 426, 494, 567, 645, 728, 816, 909, 1007, 1110, 1218, 1331, 1449, 1572, 1700, 1833, 1971, 2114, 2262, 2415, 2573, 2736, 2904, 3077, 3255, 3438, 3626, 3819, 4017, 4220, 4428, 4641, 4859, 5082, 5310, 5543, 5781, 6024, 6272, 6525
Offset: 0

Views

Author

Bruno Berselli, Dec 22 2016

Keywords

Crossrefs

Second bisection of A165720.
The first differences are in A016885.
Cf. similar sequences provided by P(s,m)+s*m, where P(s,m) = ((s-2)*m^2-(s-4)*m)/2 is the m-th s-gonal number: A008585 (s=2), A055999 (s=3), A028347 (s=4), A140091 (s=5), A033537 (s=6), this sequence (s=7), A067725 (s=8).

Programs

  • Magma
    [n*(5*n+11)/2: n in [0..60]];
  • Mathematica
    Table[n (5 n + 11)/2, {n, 0, 60}]
    LinearRecurrence[{3,-3,1},{0,8,21},60] (* Harvey P. Dale, Nov 14 2022 *)
  • PARI
    vector(60, n, n--; n*(5*n+11)/2)
    
  • Python
    [n*(5*n+11)/2 for n in range(60)]
    
  • Sage
    [n*(5*n+11)/2 for n in range(60)]
    

Formula

O.g.f.: x*(8 - 3*x)/(1 - x)^3.
E.g.f.: x*(16 + 5*x)*exp(x)/2.
a(n+h) - a(n-h) = h*A017281(n+1), with h>=0. A particular case:
a(n) - a(-n) = 11*n = A008593(n).
a(n+h) + a(n-h) = 2*a(n) + A033429(h), with h>=0. A particular case:
a(n) + a(-n) = A033429(n).
a(n) - a(n-2) = A017281(n) for n>1. Also:
40*a(n) + 121 = A017281(n+1)^2.
a(n) = A000566(n) + 7*n, also a(n) = A000566(n) + A008589(n). - Michel Marcus, Dec 22 2016

A147651 First trisection of A028560.

Original entry on oeis.org

0, 27, 72, 135, 216, 315, 432, 567, 720, 891, 1080, 1287, 1512, 1755, 2016, 2295, 2592, 2907, 3240, 3591, 3960, 4347, 4752, 5175, 5616, 6075, 6552, 7047, 7560, 8091, 8640, 9207, 9792, 10395, 11016
Offset: 0

Views

Author

Paul Curtz, Nov 09 2008

Keywords

Comments

Nonnegative k such that k/9 + 1 is a square. - Bruno Berselli, Apr 10 2018

Crossrefs

Programs

Formula

a(n) = 9*n*(n+2).
a(n) = a(n-1) + 9*A144396(n) for n > 0.
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 9*x*(3 - x)/(1-x)^3.
E.g.f.: 9*x*(3 + x)*exp(x).
a(n) = 9*A005563(n) = 3*A067725(n) = A028560(3*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

More terms from Vincenzo Librandi, Nov 26 2010
Previous Showing 11-20 of 23 results. Next