cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A116615 Values of n such that prime(2n) mod 12 = 7.

Original entry on oeis.org

2, 4, 7, 11, 17, 18, 19, 23, 24, 29, 45, 57, 69, 94, 101, 105, 111, 112, 116, 121, 129, 133, 136, 137, 138, 141, 150, 157, 162, 164, 170, 172, 174, 177, 184, 187, 197, 203, 207, 209, 220, 231, 235, 239, 245, 250, 251, 252, 254, 255, 260, 261, 270, 273, 276, 283
Offset: 1

Views

Author

Roger L. Bagula, Mar 29 2006

Keywords

Examples

			23 is in the sequence because the 46th prime is 199 and 199 mod 12=7.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if ithprime(2*n) mod 12 = 7 then n else fi end: seq(a(n),n=1..300);
  • Mathematica
    Select[Range[1, 500], Mod[Prime[2*#], 12] == 7 &] (* G. C. Greubel, Nov 19 2017 *)
  • PARI
    for( n=1,999, prime(2*n)%12==7 & print1(n",")) \\ M. F. Hasler, May 22 2009

Formula

Equals (1/2) * { even terms in A160592 = A000720(A068229) }. - M. F. Hasler, May 22 2009

Extensions

Edited by N. J. A. Sloane, Apr 05 2006

A124988 Primes of the form 12k+7 generated recursively. Initial prime is 7. General term is a(n)=Min {p is prime; p divides 3+4Q^2; Mod[p,12]=7}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

7, 199, 7761799, 487, 67, 103, 1482549740515442455520791, 31, 139, 787, 19, 39266047, 1955959, 50650885759, 367, 185767, 62168707
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of 3+4Q^2 are congruent to 1 modulo 6.
At least one prime divisor of 3+4Q^2 is congruent to 3 modulo 4 and hence to 7 modulo 12.
The first six terms are the same as those of A057204.

Examples

			a(3) = 1482549740515442455520791 is the smallest prime divisor congruent to 7 mod 12 of 3+4Q^2 = 5281642303363312989311974746340327 = 3562539697 * 1482549740515442455520791, where Q = 7 * 199 * 7761799 * 487 * 67 * 103.
		

Crossrefs

Programs

  • Mathematica
    a={7}; q=1;
    For[n=2,n<=7,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4*q^2+3][[All,1]],Mod[#,12]==7 &]]];
        ];
    a (* Robert Price, Jul 15 2015 *)

A141682 Number of isomorphism classes of (2n+1)-reflexive polygons.

Original entry on oeis.org

16, 1, 12, 29, 1, 61, 81, 1, 113, 131, 2, 163, 50, 2, 215, 233, 2, 34, 285, 3, 317, 335, 2, 367, 182, 3, 419, 72, 4, 469, 489, 3, 93, 539, 4, 571, 591, 3, 185, 641, 5, 673, 131, 5, 725, 240, 6, 148, 795, 5, 827, 845, 3, 877, 897, 7, 929, 186, 6, 338, 656, 7, 240, 1049, 8, 1081, 393, 5, 1133, 1151, 8, 542, 245, 7, 1235, 1253
Offset: 0

Views

Author

Benjamin Nill, Jul 02 2012

Keywords

Comments

There are no l-reflexive polygons for even index l.

Examples

			a(0)=16 equals the number of isomorphism classes of (1-)reflexive polygons, A090045(2).
		

Crossrefs

Cf. A090045.

Formula

It seems that for n > 2, a(n) = 17*n - k where k = 21, 22, 23, 24 iff 2*n+1 is a prime from A068228, A068229, A040117, A068231, respectively. - Andrey Zabolotskiy, Apr 21 2022

A160592 Indices of primes congruent to 7 modulo 12.

Original entry on oeis.org

4, 8, 11, 14, 19, 22, 27, 31, 34, 36, 38, 46, 47, 48, 58, 61, 63, 67, 73, 75, 85, 90, 93, 95, 99, 101, 105, 111, 114, 115, 117, 125, 129, 131, 133, 138, 141, 143, 149, 153, 155, 157, 163, 167, 175, 177, 179, 181, 188, 193, 202, 207, 210, 213, 217, 222, 224, 229, 232
Offset: 1

Views

Author

M. F. Hasler, May 22 2009

Keywords

Comments

The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 02 2021

Examples

			a(1) = 4 since the 4th prime, A000040(4) = 7, is the first one to be equal to 7 (mod 12).
a(2) = 8 since the 8th prime, A000040(8) = 19, is the second one to be equal to 7 (mod 12).
		

Crossrefs

A116615 lists the even terms of this sequence, divided by 2.

Programs

  • PARI
    for( n=1,999, prime(n)%12==7 & print1(n","))

Formula

a(n) = A000720(A068229(n)).

A116616 Values of n such that prime(2n+1) mod 12 = 7.

Original entry on oeis.org

5, 9, 13, 15, 23, 30, 31, 33, 36, 37, 42, 46, 47, 49, 50, 52, 55, 57, 58, 62, 64, 65, 66, 70, 71, 74, 76, 77, 78, 81, 83, 87, 88, 89, 90, 96, 103, 106, 108, 114, 116, 117, 121, 123, 124, 130, 134, 142, 144, 148, 151, 152, 160, 163, 166, 167, 175, 182, 185, 191, 192
Offset: 1

Views

Author

Roger L. Bagula, Mar 29 2006

Keywords

Examples

			33 is in the sequence because the 67th prime is 331 and 331 mod 12=7.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if ithprime(2*n+1) mod 12 = 7 then n else fi end: seq(a(n),n=0..215);
  • Mathematica
    Select[Range[220], Mod[Prime[2# + 1], 12] == 7 &] (* Stefan Steinerberger, Apr 08 2006 *)
  • PARI
    for(n=1,999, prime(2*n+1)%12==7 & print1(n",")) \\ M. F. Hasler, May 22 2009

Formula

Equals { odd terms in A160592 = A000720(A068229) } / 2, rounded towards zero. - M. F. Hasler, May 22 2009

Extensions

Edited by N. J. A. Sloane, Apr 05 2006

A142786 Primes congruent to 7 mod 60.

Original entry on oeis.org

7, 67, 127, 307, 367, 487, 547, 607, 727, 787, 907, 967, 1087, 1327, 1447, 1567, 1627, 1747, 1867, 1987, 2287, 2347, 2467, 2647, 2707, 2767, 2887, 3067, 3187, 3307, 3547, 3607, 3727, 3847, 3907, 3967, 4027, 4327, 4447, 4507, 4567, 4987, 5107, 5167, 5227
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Comment from Joshua S.M. Weiner, Oct 12 2012 (Start)
Intersection of A068229 and A141882. Subsequence of A132231.
Congruence classes of primes mod 60: A088955 (1), (this sequence 7), A117047 (11), A142787 (13), A142788 (17), A142789 (19), A142790 (23), A142791 (29), A142792 (31), A142793 (37), A142794 (41), A142795 (43), A142796 (47), A142797 (49), A142798 (53), A142799 (59). (End)

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(6000) | p mod 60 eq 7 ]; // Vincenzo Librandi, Sep 04 2012
  • Mathematica
    Select[Prime[Range[1000]], Mod[#, 60] == 7 &] (* T. D. Noe, Oct 12 2012 *)
    Select[Range[7,5300,60],PrimeQ] (* Harvey P. Dale, Nov 21 2018 *)

A164622 Primes p such that p*floor(p/2) - 4 and p*floor(p/2) + 4 are prime numbers.

Original entry on oeis.org

151, 463, 571, 631, 643, 991, 1063, 1171, 1831, 2083, 2311, 4951, 5023, 6211, 6703, 6763, 7723, 7951, 9043, 11383, 12163, 12391, 13183, 14851, 15031, 17431, 19231, 19543, 20143, 22051, 23143, 25951, 26371, 27283, 28351, 29131, 30643, 32803
Offset: 1

Views

Author

Keywords

Comments

151*75-4=11321 (prime), 151*75+4=11329 (prime), ..

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[p*Floor[p/2]-4]&&PrimeQ[p*Floor[p/2]+4],AppendTo[lst,p]],{n,8!}];lst

Extensions

Edited by Charles R Greathouse IV, Nov 02 2009

A164623 Primes p such that p*(p-1)/2-5 and p*(p-1)/2+5 are also prime numbers.

Original entry on oeis.org

13, 157, 673, 1069, 1117, 1153, 1213, 1597, 2029, 2089, 2437, 2713, 2833, 3613, 4057, 4909, 5653, 6337, 6529, 7549, 7993, 8053, 9613, 10789, 11497, 11689, 12073, 12373, 13309, 13669, 13789, 14173, 15289, 15937, 16249, 18097, 18637, 19249, 19993
Offset: 1

Views

Author

Keywords

Comments

Primes A000040(k) such that A008837(k)+-5 are also prime numbers.

Examples

			13 is in the sequence because 13*6-5=73 and 13*6+5=83 are both prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2300]], PrimeQ[# (# - 1)/2 - 5] && PrimeQ[# (# - 1)/2 + 5] &]
  • PARI
    forprime(p=2,10^6,my(b=binomial(p,2));if(isprime(b-5)&isprime(b+5),print1(p,", "))); /* Joerg Arndt, Apr 10 2013 */

Extensions

Edited by R. J. Mathar, Aug 20 2009
Mathematica code adapted to the definition by Bruno Berselli, Apr 10 2013

A180217 a(n) = (n-th prime modulo 3) + (n-th prime modulo 4).

Original entry on oeis.org

4, 3, 3, 4, 5, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 5, 2, 4, 5, 2, 4, 5, 3, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 3, 4, 2, 4, 5, 3, 5, 2, 5, 2, 3, 4, 4, 4, 5, 2, 3, 5, 2, 5, 3, 5, 3, 4, 2, 3, 4, 3, 4, 5, 2, 3, 4, 2, 5, 2, 3, 5, 4, 2, 4, 5, 3, 2, 3, 2, 5, 2, 5, 2, 4, 5, 3, 2, 3, 4, 5, 5, 4, 5, 4, 5, 3, 3, 4, 2, 4, 3
Offset: 1

Views

Author

Zak Seidov, Jan 16 2011

Keywords

Comments

a(n) = 2 iff prime(n) == 1 (mod 12); a(n) = 2 for prime(n) = 13, 37, 61, 73, 97, 109, ... (A068228).
a(n) = 5 iff prime(n) == 11 (mod 12); a(n) = 5 for prime(n) = 11, 23, 47, 59, 71, 83, ... (A068231).
For n > 2, a(n) = 3 iff prime(n) == 5 (mod 12); a(n) = 3 for prime(n) = 5, 17, 29, 41, 53, 89, ... (A040117).
For n > 2, a(n) = 4 iff prime(n) == 7 (mod 12); a(n) = 4 for prime(n) = 7, 19, 31, 43, 67, 79, ... (A068229).

Crossrefs

Programs

  • Magma
    A180217:=func< n | p mod 3 + p mod 4 where p is NthPrime(n) >; [ A180217(n): n in [1..105] ]; // Klaus Brockhaus, Jan 18 2011
  • Mathematica
    Mod[#,3]+Mod[#,4]&/@Prime[Range[110]] (* Harvey P. Dale, Nov 09 2011 *)

A274507 Primes one more than the sum over a pair of prime numbers that differ by 8.

Original entry on oeis.org

19, 31, 67, 127, 151, 211, 271, 307, 547, 727, 787, 811, 907, 967, 991, 1447, 1531, 1831, 1867, 2131, 2467, 2647, 2887, 2971, 3967, 5107, 5227, 5407, 5431, 5827, 6091, 6427, 6451, 6607, 6907, 6991, 7411, 8191, 8431, 8707, 9511, 10111
Offset: 1

Views

Author

Keywords

Comments

Any prime p in this sequence is such that p = (p-9)/2 + (p+7)/2 + 1, where (p-9)/2 and (p+7)/2 are also primes and they differ by 8.
This sequence is infinite under Dickson's conjecture. - Charles R Greathouse IV, Jul 08 2016

Examples

			19 = 5 + 13 + 1. Note that, (19-9)/2 = 5 and (19+7)/2 = 13 and the prime pairs 5 and 13 differ by 8.
31 = 11 + 19 + 1. Note that, (31-9)/2 = 11 and (31+7)/2 = 19 and the prime pairs 11 and 19 differ by 8.
		

Crossrefs

A subsequence of A068229 and also of A145472.

Programs

  • Mathematica
    Select[2 # + 9 &@ Select[Prime@ Range[10^3], PrimeQ[# + 8] &], PrimeQ] (* Michael De Vlieger, Jun 26 2016 *)
  • PARI
    lista(nn)=forprime(p=3, nn, if (isprime(p+8) && isprime(q=2*p+9), print1(q, ", "))); \\ Michel Marcus, Jun 25 2016
Previous Showing 21-30 of 33 results. Next