cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 101 results. Next

A092616 Decimal expansion of e^(-1/4).

Original entry on oeis.org

7, 7, 8, 8, 0, 0, 7, 8, 3, 0, 7, 1, 4, 0, 4, 8, 6, 8, 2, 4, 5, 1, 7, 0, 2, 6, 6, 9, 7, 8, 3, 2, 0, 6, 4, 7, 2, 9, 6, 7, 7, 2, 2, 9, 0, 4, 2, 6, 1, 4, 1, 4, 7, 4, 2, 4, 1, 3, 1, 7, 3, 6, 6, 2, 6, 8, 2, 4, 5, 6, 1, 2, 0, 5, 3, 5, 1, 9, 2, 4, 4, 6, 3, 1, 9, 9, 9, 0, 1, 5, 2, 4, 7, 3, 1, 3, 8, 2, 0, 6, 0, 4, 1, 2, 4
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.778800783071404
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Surd[E,-4],10,120][[1]] (* Harvey P. Dale, Jul 07 2013 *)
    Limit[Product[(k/n)^(k/n^2), {k, 1, n}], n->Infinity] (* Vaclav Kotesovec, Oct 06 2023 *)

Formula

Equals limit_{n->oo} Product_{k=1..n} (k/n)^(k/n^2). - Vaclav Kotesovec, Oct 06 2023

A092727 Decimal expansion of e^(-1/6).

Original entry on oeis.org

8, 4, 6, 4, 8, 1, 7, 2, 4, 8, 9, 0, 6, 1, 4, 0, 7, 4, 0, 4, 4, 9, 1, 7, 3, 9, 9, 7, 9, 8, 7, 5, 4, 5, 7, 6, 8, 8, 8, 2, 9, 1, 6, 2, 4, 4, 2, 7, 0, 5, 1, 8, 3, 9, 3, 2, 2, 6, 5, 0, 9, 1, 4, 9, 8, 0, 1, 4, 1, 4, 7, 8, 7, 0, 5, 4, 6, 1, 4, 7, 4, 7, 4, 8, 2, 1, 6, 4, 7, 0, 3, 4, 2, 0, 1, 1, 5, 7, 5, 9, 3, 2, 5, 3, 1
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.84648172489061407404491739979875457688829162442705...
		

Crossrefs

Cf. A001113, A019774, A068985, A092515 (reciprocal).

Programs

  • Mathematica
    RealDigits[E^-(1/6),10,120][[1]] (* Harvey P. Dale, Jun 18 2012 *)

Formula

Equals lim_{x->0} (sin(x)/x)^(1/x^2). - Amiram Eldar, Jul 04 2022

A107586 Powers of e^(1/e) rounded up.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 10, 14, 19, 28, 40, 58, 83, 120, 173, 250, 360, 521, 752, 1086, 1569, 2266, 3273, 4728, 6831, 9868, 14256, 20594, 29752, 42981, 62093, 89704, 129592, 187217, 270466, 390734, 564480, 815486, 1178107, 1701973, 2458785, 3552127, 5131644, 7413521
Offset: 0

Views

Author

Henry Bottomley, May 16 2005

Keywords

Comments

Smallest integer such that a(n)^x-x^n is nonnegative for all nonnegative reals x.

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[(E^(1/E))^n],{n,0,43}] (* James C. McMahon, Feb 12 2024 *)

A135003 Decimal expansion of 3/e.

Original entry on oeis.org

1, 1, 0, 3, 6, 3, 8, 3, 2, 3, 5, 1, 4, 3, 2, 6, 9, 6, 4, 7, 8, 6, 5, 7, 1, 3, 1, 0, 4, 8, 4, 3, 8, 2, 6, 0, 2, 3, 3, 7, 4, 3, 3, 3, 9, 3, 0, 9, 5, 3, 0, 3, 5, 0, 3, 5, 2, 3, 5, 1, 0, 4, 0, 5, 0, 9, 2, 3, 8, 4, 4, 8, 7, 2, 3, 4, 6, 9, 9, 4, 1, 0, 0, 7, 1, 4, 4, 1, 8, 2, 3, 0, 3, 7, 7, 5, 8, 9, 3, 1, 2, 3, 9, 8, 8
Offset: 1

Views

Author

Omar E. Pol, Nov 15 2007

Keywords

Examples

			1.103638323514...
		

Crossrefs

Programs

Formula

Equals Sum_{n>=0} 1/A165457(n). - Jaume Oliver Lafont, Oct 03 2009
Equals 3/A001113 and 3*A068985. - Michel Marcus, Sep 16 2016
Equals 1 - Integral_{x=-1/e..0} W(x) dx, where W is Lambert's function. - Amiram Eldar, Jul 18 2021

Extensions

Minor edits by Omar E. Pol, Oct 07 2009

A174549 a(n) = (2*n-1)! + (2*n)!.

Original entry on oeis.org

3, 30, 840, 45360, 3991680, 518918400, 93405312000, 22230464256000, 6758061133824000, 2554547108585472000, 1175091669949317120000, 646300418472124416000000, 418802671169936621568000000, 315777214062132212662272000000, 274094621805930760590852096000000
Offset: 1

Views

Author

Paul Curtz, Mar 22 2010

Keywords

Comments

x*cos(x) - sin(x) = Sum_{n>=1} (-1)^n/a(n) * x^(2*n+1). - James R. Buddenhagen, Nov 21 2013
Also the number of adjacency matrices for the n-helm graph. - Eric W. Weisstein, May 25 2017

Crossrefs

Programs

Formula

a(n) = A001048(2n) = (1+2n)*(2n-1)! = 3*A165457(n-1).
Sum_{n>=1} 1/a(n) = A068985 = 1/e = lim_{n->infinity} A000255(n-1)/A001048(n).
zeta(2*n+1) = Integral_{u=0..Pi/2} (sin(u)*log(sin(u))^(2*n+1)/(cos(u)^3))*(-2)^(2*n+1)/(n*a(n)) du. Verified for n=1 to 4 on Wolfram Alpha. - Jean-Claude Babois, Oct 28 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = sin(1)-cos(1) = (-1)*A143624. - Amiram Eldar, Apr 12 2021

A270752 (r,1)-greedy sequence, where r(k) = 1/(k*e).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 262, 167395, 42355398928, 2986137074379747535250, 16334453331070842795541380956715272941358931, 334377619479874433401339085661668551899899040409749812309411639875183486098285324762070
Offset: 1

Views

Author

Clark Kimberling, Apr 09 2016

Keywords

Comments

Let x > 0, and let r = (r(k)) be a sequence of positive irrational numbers. Let a(1) be the least positive integer m such that r(1)/m < x, and inductively let a(n) be the least positive integer m such that r(1)/a(1) + ... + r(n-1)/a(n-1) + r(n)/m < x. The sequence (a(n)) is the (r,x)-greedy sequence. We are interested in choices of r and x for which the series r(1)/a(1) + ... + r(n)/a(n) + ... converges to x. See A270744 for a guide to related sequences.

Examples

			a(1) = ceiling(r(1)) = ceiling(1/e) = ceiling(0.367...) = 1;
a(2) = ceiling(r(2)/(1 - r(1)/1)) = 1;
a(3) = ceiling(r(3)/(1 - r(1)/1 - r(2)/1)) = 1.
The first 6 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.367..., 0.551..., 0.674..., 0.766..., 0.839..., 0.901...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; z = 16;
    r[k_] := N[1/(k*E), 1000]; f[x_, 0] = x;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = 1; Table[n[x, k], {k, 1, z}]
    N[Sum[r[k]/n[x, k], {k, 1, 18}], 200]

Formula

a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1).
r(1)/a(1) + ... + r(n)/a(n) + ... = 1.

A325905 Decimal expansion of 2/e^2.

Original entry on oeis.org

2, 7, 0, 6, 7, 0, 5, 6, 6, 4, 7, 3, 2, 2, 5, 3, 8, 3, 7, 8, 7, 9, 9, 8, 9, 8, 9, 9, 4, 4, 9, 6, 8, 8, 0, 6, 8, 1, 5, 2, 6, 3, 0, 9, 1, 8, 1, 9, 1, 5, 1, 7, 6, 2, 9, 3, 6, 3, 1, 7, 7, 4, 5, 3, 0, 8, 1, 4, 6, 7, 4, 8, 2, 0, 2
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of the asymptotic (n -> inf) probability of success in the secretary problem when the number of applicants is uniformly distributed on {1, 2, ..., n}. It means that less is known than in the basic secretary problem, so this constant is less than A068985 (and also A246665).

Examples

			0.2706705664732253837879989899...
		

Crossrefs

Equals twice A092553.

Programs

  • Mathematica
    N[2/E^2, 100] // RealDigits // First

A383215 Primes p preceded and followed by gaps whose difference (absolute value) is greater than log(p).

Original entry on oeis.org

7, 29, 31, 113, 127, 139, 149, 181, 191, 199, 223, 241, 283, 307, 317, 331, 347, 419, 421, 431, 467, 521, 523, 541, 619, 641, 661, 673, 773, 809, 811, 821, 829, 853, 863, 877, 887, 907, 953, 967, 1009, 1021, 1031, 1049, 1051, 1061, 1069, 1087, 1129, 1151, 1153, 1213, 1259, 1277
Offset: 1

Views

Author

Alain Rocchelli, Apr 19 2025

Keywords

Comments

Primes prime(k) such that abs(prime(k-1)-2*prime(k)+prime(k+1)) > log(prime(k)), where log is the natural logarithm.
a(n) ~ prime(round(n*e)) as n tends to infinity, where e is Euler's number.

Examples

			7 is a term because abs(5-2*7+11)=2 and log(7)=1.9459.
29 is a term because abs(23-2*29+31)=4 and log(29)=3.3673.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2,206]],Abs[NextPrime[#,-1]-2#+NextPrime[#]]>Log[#]&] (* James C. McMahon, Apr 29 2025 *)
  • PARI
    forprime(P=3, 1300, my(M=P-precprime(P-1), Q=nextprime(P+1)-P, AR1=min(M,Q), AR2=max(M,Q), AR0=log(P)); if(AR2-AR1>AR0, print1(P,", ")));

Formula

Limit_{n->oo} n / PrimePi(a(n)) = 1/e (A068985).

A092618 Decimal expansion of e^(-1/5).

Original entry on oeis.org

8, 1, 8, 7, 3, 0, 7, 5, 3, 0, 7, 7, 9, 8, 1, 8, 5, 8, 6, 6, 9, 9, 3, 5, 5, 0, 8, 6, 1, 9, 0, 3, 9, 4, 2, 4, 3, 5, 8, 5, 9, 1, 2, 5, 6, 2, 6, 9, 0, 1, 5, 6, 7, 2, 4, 7, 8, 0, 2, 8, 7, 6, 1, 6, 1, 6, 5, 0, 8, 7, 7, 7, 4, 0, 2, 4, 9, 1, 0, 9, 8, 6, 2, 3, 4, 5, 7, 2, 0, 4, 0, 8, 4, 3, 2, 1, 4, 2, 1, 7, 9, 0, 7, 1, 5
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.81873075307798
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Power[E, (-5)^-1],10,120][[1]] (* Harvey P. Dale, Jan 27 2012 *)

A092750 Decimal expansion of e^(-1/7).

Original entry on oeis.org

8, 6, 6, 8, 7, 7, 8, 9, 9, 7, 5, 0, 1, 8, 1, 6, 2, 7, 5, 0, 2, 9, 3, 2, 4, 7, 6, 5, 8, 1, 6, 0, 2, 5, 6, 3, 1, 9, 6, 5, 3, 1, 9, 4, 7, 9, 5, 4, 8, 1, 3, 3, 3, 9, 5, 5, 8, 8, 4, 5, 0, 5, 7, 3, 4, 1, 3, 8, 9, 1, 0, 3, 7, 3, 7, 7, 7, 2, 6, 7, 5, 7, 0, 3, 0, 1, 3, 1, 5, 5, 8, 7, 7, 0, 2, 6, 9, 8, 8, 1, 7, 2, 8, 3, 2, 9, 9, 9, 6
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.866877899750...
		

Crossrefs

Programs

  • Maple
    evalf(1/exp(1/7), 124);  # Alois P. Heinz, Apr 04 2020
  • Mathematica
    RealDigits[N[Exp[-1/7], 112]][[1]] (* Georg Fischer, Apr 04 2020 *)

Extensions

a(104) corrected by Georg Fischer, Apr 04 2020
Previous Showing 51-60 of 101 results. Next