A098402
a(n) = (0^n + 4^n * binomial(2*n,n))/2.
Original entry on oeis.org
1, 4, 48, 640, 8960, 129024, 1892352, 28114944, 421724160, 6372720640, 96865353728, 1479398129664, 22684104654848, 348986225459200, 5384358907084800, 83278084429578240, 1290810308658462720, 20045524793284362240, 311819274562201190400, 4857816066863765913600
Offset: 0
-
[(0^n + 4^n*(n+1)*Catalan(n))/2: n in [0..40]]; // G. C. Greubel, Dec 27 2023
-
Table[(Boole[n == 0] + 4^n Binomial[2 n, n])/2, {n, 0, 18}] (* or *)
CoefficientList[Series[8 x/(# (1 - #)) &@ Sqrt[1 - 16 x], {x, 0, 18}], x] (* Michael De Vlieger, Aug 03 2016 *)
-
[(4^n*binomial(2*n,n) + int(n==0))/2 for n in range(41)] # G. C. Greubel, Dec 27 2023
A099045
a(n) = (3*0^n + 4^n*binomial(2*n,n))/4.
Original entry on oeis.org
1, 2, 24, 320, 4480, 64512, 946176, 14057472, 210862080, 3186360320, 48432676864, 739699064832, 11342052327424, 174493112729600, 2692179453542400, 41639042214789120, 645405154329231360, 10022762396642181120, 155909637281100595200
Offset: 0
-
[(3*0^n + 4^n*Binomial(2*n, n))/4: n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
-
Join[{1}, Table[4^(n-1)*Binomial[2*n,n], {n,1,30}]] (* G. C. Greubel, Dec 31 2017 *)
-
for(n=0,30, print1((3*0^n + 4^n*binomial(2*n,n))/4, ", ")) \\ G. C. Greubel, Dec 31 2017
A069721
Number of rooted unicursal planar maps with n edges and no vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
Original entry on oeis.org
0, 0, 4, 40, 336, 2688, 21120, 164736, 1281280, 9957376, 77395968, 601968640, 4686094336, 36515020800, 284817162240, 2223764766720, 17379001958400, 135942415319040, 1064286014668800, 8338993950228480, 65388301768458240, 513094808135270400, 4028909667357818880
Offset: 1
G.f. = 4*x^3 + 40*x^4 + 336*x^5 + 2688*x^6 + 21120*x^7 + 164736*x^8 + ...
- Robert Israel, Table of n, a(n) for n = 1..1109
- Valery A. Liskovets and Timothy R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
- Youngja Park and SeungKyung Park, Enumeration of generalized lattice paths by string types, peaks, and ascents, Discrete Mathematics 339.11 (2016): 2652-2659.
-
[0] cat [2^(n-2)*(n-2)*Binomial(2*n-2, n-1)/n: n in [2..25]]; // Vincenzo Librandi, Nov 13 2016
-
0, seq(2^(n-2)*(n-2)*binomial(2*n-2, n-1)/n, n=2..30); # Robert Israel, Nov 12 2016
-
a[ n_] := SeriesCoefficient[ ((1 - Sqrt[1 - 8 x])/2)^3 / (2 Sqrt[1 - 8 x] ), {x, 0, n}]; (* Michael Somos, Nov 13 2016 *)
A099044
a(n) = (2*0^n + 3^n*binomial(2*n,n))/3.
Original entry on oeis.org
1, 2, 18, 180, 1890, 20412, 224532, 2501928, 28146690, 318995820, 3636552348, 41655054168, 479033122932, 5527305264600, 63958818061800, 741922289516880, 8624846615633730, 100454095876204620, 1171964451889053900, 13693479385229998200, 160213708807190978940
Offset: 0
-
[(2*0^n + 3^n*Binomial(2*n, n))/3: n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
-
Join[{1}, Table[3^(n-1)*binomial(2*n,n), {n,1,30}]] (* G. C. Greubel, Dec 31 2017 *)
-
for(n=0, 30, print1((2*0^n + 3^n*binomial(2*n,n))/3, ", ")) \\ G. C. Greubel, Dec 31 2017
A099046
a(n) = (4*0^n + 5^n*binomial(2*n,n))/5.
Original entry on oeis.org
1, 2, 30, 500, 8750, 157500, 2887500, 53625000, 1005468750, 18992187500, 360851562500, 6888984375000, 132038867187500, 2539208984375000, 48970458984375000, 946762207031250000, 18343517761230468750, 356080050659179687500, 6923778762817382812500
Offset: 0
-
[(4*0^n + 5^n*Binomial(2*n, n))/5: n in [ 0..30]]; // G. C. Greubel, Dec 31 2017
-
CoefficientList[Series[(1+4Sqrt[1-20x])/(5Sqrt[1-20x]),{x,0,20}],x] (* Harvey P. Dale, Mar 30 2011 *)
Join[{1}, Table[5^(n - 1)*Binomial[2*n, n], {n,1,50}]] (* G. C. Greubel, Dec 31 2017 *)
-
for(n=0,30, print1((4*0^n + 5^n*binomial(2*n,n))/5, ", ")) \\ G. C. Greubel, Dec 31 2017
A128413
Inverse of number triangle A128412.
Original entry on oeis.org
1, 2, 1, 12, 8, 1, 80, 60, 12, 1, 560, 448, 112, 16, 1, 4032, 3360, 960, 180, 20, 1, 29568, 25344, 7920, 1760, 264, 24, 1, 219648, 192192, 64064, 16016, 2912, 364, 28, 1, 1647360, 1464320, 512512, 139776, 29120, 4480, 480, 32, 1, 12446720
Offset: 0
Triangle begins
1,
2, 1,
12, 8, 1,
80, 60, 12, 1,
560, 448, 112, 16, 1,
4032, 3360, 960, 180, 20, 1,
29568, 25344, 7920, 1760, 264, 24, 1,
219648, 192192, 64064, 16016, 2912, 364, 28, 1
A370280
Coefficient of x^n in the expansion of 1/( (1-x)^2 - x )^n.
Original entry on oeis.org
1, 3, 25, 234, 2305, 23373, 241486, 2527920, 26720529, 284555700, 3048323135, 32812937820, 354619072990, 3845377105794, 41817926091120, 455893204069944, 4980851709418353, 54521955043418925, 597823622561048020, 6564929893462467450, 72189820135528858455
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 100);
A370280:= func< n | Coefficient(R!( 1/(1-3*x+x^2)^n ), n) >;
[A370280(n): n in [0..30]]; // G. C. Greubel, Feb 07 2025
-
A370280[n_]:= Coefficient[Series[1/(1-3*x+x^2)^n, {x,0,100}], x, n];
Table[A370280[n], {n,0,40}] (* G. C. Greubel, Feb 07 2025 *)
-
a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(3*n+k-1, n-k));
-
def A370280(n): return sum(binomial(n+j-1,j)*binomial(3*n+j-1,n-j) for j in range(n+1))
print([A370280(n) for n in range(31)]) # G. C. Greubel, Feb 07 2025
A098401
a(n) = (0^n + 3^n*binomial(2*n,n))/2.
Original entry on oeis.org
1, 3, 27, 270, 2835, 30618, 336798, 3752892, 42220035, 478493730, 5454828522, 62482581252, 718549684398, 8290957896900, 95938227092700, 1112883434275320, 12937269923450595, 150681143814306930, 1757946677833580850, 20540219077844997300, 240320563210786468410
Offset: 0
-
[(0^n + 3^n * Binomial(2*n, n))/2: n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
-
CoefficientList[Series[(6x)/(Sqrt[1-12x](1-Sqrt[1-12x])),{x,0,30}],x] (* Harvey P. Dale, Nov 29 2023 *)
Table[(3^n*Binomial[2*n,n] +Boole[n==0])/2, {n,0,40}] (* G. C. Greubel, Dec 27 2023 *)
a[n_] := 3^n*HypergeometricPFQ[{-n, -n + 1}, {1}, 1]; Flatten[Table[a[n], {n,0,20}]] (* Detlef Meya, May 21 2024 *)
-
[(3^n*binomial(2*n,n) + int(n==0))/2 for n in range(41)] # G. C. Greubel, Dec 27 2023
A240558
a(n) = 2^n*n!/((floor(n/2)+1)*floor(n/2)!^2).
Original entry on oeis.org
1, 2, 4, 24, 32, 320, 320, 4480, 3584, 64512, 43008, 946176, 540672, 14057472, 7028736, 210862080, 93716480, 3186360320, 1274544128, 48432676864, 17611882496, 739699064832, 246566354944, 11342052327424, 3489862254592, 174493112729600, 49855175065600
Offset: 0
-
A240558 := n -> 2^n*n!/((iquo(n,2)+1)*iquo(n,2)!^2):
seq(A240558(n), n=0..30);
-
Table[SeriesCoefficient[((I*(2*x*(8*x+1)-1))/Sqrt[16*x^2-1]-2*x+1) /(8*x^2), {x,0,n}], {n,0,22}]
-
x='x+O('x^50); Vec(round((I*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2)) \\ G. C. Greubel, Apr 05 2017
-
def A240558():
x, n = 1, 1
while True:
yield x
m = 2*n if is_odd(n) else 8/(n+2)
x *= m
n += 1
a = A240558(); [next(a) for i in range(36)]
A370282
Coefficient of x^n in the expansion of 1/( (1-x)^3 - x )^n.
Original entry on oeis.org
1, 4, 42, 499, 6250, 80634, 1060269, 14127852, 190102482, 2577310285, 35150819132, 481734467955, 6628611532621, 91517611501008, 1267182734325900, 17589579427715124, 244689432718144770, 3410399867585709501, 47613678409439712861, 665756829352248572725
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(4*n+2*k-1, n-k));
Comments