cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A098402 a(n) = (0^n + 4^n * binomial(2*n,n))/2.

Original entry on oeis.org

1, 4, 48, 640, 8960, 129024, 1892352, 28114944, 421724160, 6372720640, 96865353728, 1479398129664, 22684104654848, 348986225459200, 5384358907084800, 83278084429578240, 1290810308658462720, 20045524793284362240, 311819274562201190400, 4857816066863765913600
Offset: 0

Views

Author

Paul Barry, Sep 06 2004

Keywords

Comments

It seems that a(n) is the number of pairs of binary vectors of length 2*n which are orthogonal. (Define binary vectors here to have components of value +1 or -1. There are no pairs of binary vectors of odd length which are orthogonal.) For example, the a(1) = 4 pairs of binary vectors of length 2 are (-1,-1) and (1,-1), (-1,-1) and (-1,1), (1,-1) and (1,1), (-1,1) and (1,1). Tested up to and including a(8). - R. J. Mathar, Apr 15 2013
Tested up to and including a(210). - R. H. Hardin, May 08 2013

Crossrefs

Programs

  • Magma
    [(0^n + 4^n*(n+1)*Catalan(n))/2: n in [0..40]]; // G. C. Greubel, Dec 27 2023
    
  • Mathematica
    Table[(Boole[n == 0] + 4^n Binomial[2 n, n])/2, {n, 0, 18}] (* or *)
    CoefficientList[Series[8 x/(# (1 - #)) &@ Sqrt[1 - 16 x], {x, 0, 18}], x] (* Michael De Vlieger, Aug 03 2016 *)
  • SageMath
    [(4^n*binomial(2*n,n) + int(n==0))/2 for n in range(41)] # G. C. Greubel, Dec 27 2023

Formula

G.f.: 8*x/( sqrt(1 - 16*x)*(1 - sqrt(1 - 16*x)) ).
a(n+1) = 4*A098400(n).
n*a(n) - 8*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Nov 09 2012
a(n) ~ 16^n/(2*sqrt(Pi*n)). - Ilya Gutkovskiy, Aug 03 2016
a(n) = A055372(2*n,n). - Alois P. Heinz, Jan 21 2020
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 17/15 + 32*arcsin(1/4)/(15*sqrt(15)).
Sum_{n>=0} (-1)^n/a(n) = 15/17 - 32*arcsinh(1/4)/(17*sqrt(17)). (End)

A099045 a(n) = (3*0^n + 4^n*binomial(2*n,n))/4.

Original entry on oeis.org

1, 2, 24, 320, 4480, 64512, 946176, 14057472, 210862080, 3186360320, 48432676864, 739699064832, 11342052327424, 174493112729600, 2692179453542400, 41639042214789120, 645405154329231360, 10022762396642181120, 155909637281100595200
Offset: 0

Views

Author

Paul Barry, Sep 24 2004

Keywords

Comments

(1 + (k-1)*sqrt(1-4*k*x))/(k*sqrt(1-4*k*x)) is the g.f. for ((k-1)*0^n + k^n*binomial(2*n,n))/k.

Crossrefs

Programs

  • Magma
    [(3*0^n + 4^n*Binomial(2*n, n))/4: n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
    
  • Mathematica
    Join[{1}, Table[4^(n-1)*Binomial[2*n,n], {n,1,30}]] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    for(n=0,30, print1((3*0^n + 4^n*binomial(2*n,n))/4, ", ")) \\ G. C. Greubel, Dec 31 2017

Formula

G.f.: (1+3*sqrt(1-16*x))/(4*sqrt(1-16*x)).
n*a(n) +8*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 24 2012
E.g.f.: (3 + exp(8*x) * BesselI(0,8*x)) / 4. - Ilya Gutkovskiy, Nov 17 2021

A069721 Number of rooted unicursal planar maps with n edges and no vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

0, 0, 4, 40, 336, 2688, 21120, 164736, 1281280, 9957376, 77395968, 601968640, 4686094336, 36515020800, 284817162240, 2223764766720, 17379001958400, 135942415319040, 1064286014668800, 8338993950228480, 65388301768458240, 513094808135270400, 4028909667357818880
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Examples

			G.f. = 4*x^3 + 40*x^4 + 336*x^5 + 2688*x^6 + 21120*x^7 + 164736*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [0] cat [2^(n-2)*(n-2)*Binomial(2*n-2, n-1)/n: n in [2..25]]; // Vincenzo Librandi, Nov 13 2016
  • Maple
    0, seq(2^(n-2)*(n-2)*binomial(2*n-2, n-1)/n, n=2..30); # Robert Israel, Nov 12 2016
  • Mathematica
    a[ n_] := SeriesCoefficient[ ((1 - Sqrt[1 - 8 x])/2)^3 / (2 Sqrt[1 - 8 x] ), {x, 0, n}]; (* Michael Somos, Nov 13 2016 *)

Formula

a(n) = 2^(n-2)*(n-2)*binomial(2n-2, n-1)/n, n>1.
From Robert Israel, Nov 12 2016: (Start)
G.f.: 32*x^3/(sqrt(1-8*x)*(1+sqrt(1-8*x))^3).
E.g.f.: ((1-6*x)/4)*exp(4*x)*I_0(4*x)+(3/2)*exp(4*x)*I_1(4*x)+x/2-1/4, where I_0 and I_1 are modified Bessel functions of the first kind.
a(n+1) = (4*(n-1)*(2*n-1)/((n+1)*(n-2)))*a(n).
a(n) ~ 8^n/(16*sqrt(Pi*n)). (End)
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=3} 1/a(n) = 11/14 - 26*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 37*log(2)/27 - 13/18. (End)

A099044 a(n) = (2*0^n + 3^n*binomial(2*n,n))/3.

Original entry on oeis.org

1, 2, 18, 180, 1890, 20412, 224532, 2501928, 28146690, 318995820, 3636552348, 41655054168, 479033122932, 5527305264600, 63958818061800, 741922289516880, 8624846615633730, 100454095876204620, 1171964451889053900, 13693479385229998200, 160213708807190978940
Offset: 0

Views

Author

Paul Barry, Sep 24 2004

Keywords

Comments

(1 + (k-1)*sqrt(1-4*k*x))/(k*sqrt(1-4*k*x)) is the g.f. for ((k-1)*0^n + k^n*binomial(2*n,n))/k.

Crossrefs

Programs

  • Magma
    [(2*0^n + 3^n*Binomial(2*n, n))/3: n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
    
  • Mathematica
    Join[{1}, Table[3^(n-1)*binomial(2*n,n), {n,1,30}]] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    for(n=0, 30, print1((2*0^n + 3^n*binomial(2*n,n))/3, ", ")) \\ G. C. Greubel, Dec 31 2017

Formula

G.f.: 1/3 + 4*x/(sqrt(1-12*x)(1-sqrt(1-12*x))) = (1 + 2*sqrt(1-12*x))/(3*sqrt(1-12*x)).
n*a(n) +6*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 24 2012
E.g.f.: (2 + exp(6*x) * BesselI(0,6*x)) / 3. - Ilya Gutkovskiy, Nov 17 2021

A099046 a(n) = (4*0^n + 5^n*binomial(2*n,n))/5.

Original entry on oeis.org

1, 2, 30, 500, 8750, 157500, 2887500, 53625000, 1005468750, 18992187500, 360851562500, 6888984375000, 132038867187500, 2539208984375000, 48970458984375000, 946762207031250000, 18343517761230468750, 356080050659179687500, 6923778762817382812500
Offset: 0

Views

Author

Paul Barry, Sep 24 2004

Keywords

Comments

(1 + (k-1)*sqrt(1-4*k*x))/(k*sqrt(1-4*k*x)) is the g.f. for ((k-1)*0^n + k^n*binomial(2*n,n))/k.

Crossrefs

Programs

  • Magma
    [(4*0^n + 5^n*Binomial(2*n, n))/5: n in [ 0..30]]; // G. C. Greubel, Dec 31 2017
    
  • Mathematica
    CoefficientList[Series[(1+4Sqrt[1-20x])/(5Sqrt[1-20x]),{x,0,20}],x]  (* Harvey P. Dale, Mar 30 2011 *)
    Join[{1}, Table[5^(n - 1)*Binomial[2*n, n], {n,1,50}]] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    for(n=0,30, print1((4*0^n + 5^n*binomial(2*n,n))/5, ", ")) \\ G. C. Greubel, Dec 31 2017

Formula

G.f.: (1 + 4*sqrt(1-20*x))/(5*sqrt(1-20*x)).
n*a(n) +10*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 24 2012
E.g.f.: (4 + exp(10*x) * BesselI(0,10*x)) / 5. - Ilya Gutkovskiy, Nov 17 2021
a(n) = Integral_{x = 0..20} x^n * w(x) dx for n >= 1, where w(x) = 1/( 5*Pi*sqrt(x*(20 - x)) ) is positive on the interval (0, 20). The weight function w(x) is singular at x = 0 and at x = 20 and is the solution of the Hausdorff moment problem. - Peter Bala, Oct 12 2024

A128413 Inverse of number triangle A128412.

Original entry on oeis.org

1, 2, 1, 12, 8, 1, 80, 60, 12, 1, 560, 448, 112, 16, 1, 4032, 3360, 960, 180, 20, 1, 29568, 25344, 7920, 1760, 264, 24, 1, 219648, 192192, 64064, 16016, 2912, 364, 28, 1, 1647360, 1464320, 512512, 139776, 29120, 4480, 480, 32, 1, 12446720
Offset: 0

Views

Author

Paul Barry, Mar 02 2007

Keywords

Comments

First column is A069723.

Examples

			Triangle begins
1,
2, 1,
12, 8, 1,
80, 60, 12, 1,
560, 448, 112, 16, 1,
4032, 3360, 960, 180, 20, 1,
29568, 25344, 7920, 1760, 264, 24, 1,
219648, 192192, 64064, 16016, 2912, 364, 28, 1
		

Crossrefs

Cf. A128417.

Formula

Number triangle T(n,k)=if(k=0,2^n*(C(2n,n)/2+0^n/2),2^(n-k)*C(2n,n-k)); Column k has g.f. if(k=0,4x/(sqrt(1-8x)(1-sqrt(1-8x))),(1/sqrt(1-8x))*((1-4x-sqrt(1-8x))/(8x))^k);

A370280 Coefficient of x^n in the expansion of 1/( (1-x)^2 - x )^n.

Original entry on oeis.org

1, 3, 25, 234, 2305, 23373, 241486, 2527920, 26720529, 284555700, 3048323135, 32812937820, 354619072990, 3845377105794, 41817926091120, 455893204069944, 4980851709418353, 54521955043418925, 597823622561048020, 6564929893462467450, 72189820135528858455
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2024

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 100);
    A370280:= func< n | Coefficient(R!( 1/(1-3*x+x^2)^n ), n) >;
    [A370280(n): n in [0..30]]; // G. C. Greubel, Feb 07 2025
    
  • Mathematica
    A370280[n_]:= Coefficient[Series[1/(1-3*x+x^2)^n, {x,0,100}], x, n];
    Table[A370280[n], {n,0,40}] (* G. C. Greubel, Feb 07 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(3*n+k-1, n-k));
    
  • SageMath
    def A370280(n): return sum(binomial(n+j-1,j)*binomial(3*n+j-1,n-j) for j in range(n+1))
    print([A370280(n) for n in range(31)]) # G. C. Greubel, Feb 07 2025

Formula

a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(3*n+k-1,n-k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * ((1-x)^2 - x) ).
a(n) ~ sqrt((4 + sqrt(6))/(24*Pi*n)) * ((27 + 12*sqrt(6))/5)^n. - Vaclav Kotesovec, Feb 07 2025

A098401 a(n) = (0^n + 3^n*binomial(2*n,n))/2.

Original entry on oeis.org

1, 3, 27, 270, 2835, 30618, 336798, 3752892, 42220035, 478493730, 5454828522, 62482581252, 718549684398, 8290957896900, 95938227092700, 1112883434275320, 12937269923450595, 150681143814306930, 1757946677833580850, 20540219077844997300, 240320563210786468410
Offset: 0

Views

Author

Paul Barry, Sep 06 2004

Keywords

Crossrefs

Programs

  • Magma
    [(0^n + 3^n * Binomial(2*n, n))/2: n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
    
  • Mathematica
    CoefficientList[Series[(6x)/(Sqrt[1-12x](1-Sqrt[1-12x])),{x,0,30}],x] (* Harvey P. Dale, Nov 29 2023 *)
    Table[(3^n*Binomial[2*n,n] +Boole[n==0])/2, {n,0,40}] (* G. C. Greubel, Dec 27 2023 *)
    a[n_] := 3^n*HypergeometricPFQ[{-n, -n + 1}, {1}, 1]; Flatten[Table[a[n], {n,0,20}]] (* Detlef Meya, May 21 2024 *)
  • SageMath
    [(3^n*binomial(2*n,n) + int(n==0))/2 for n in range(41)] # G. C. Greubel, Dec 27 2023

Formula

a(n+1) = 3*A098399(n).
G.f.: 6*x/(sqrt(1-12*x)*(1-sqrt(1-12*x))).
n*a(n) - 6*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Nov 24 2012
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 13/11 + 24*arcsin(1/(2*sqrt(3)))/(11*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 11/13 - 24*arcsinh(1/(2*sqrt(3)))/(13*sqrt(13)). (End)
a(n) = 3^n*hypergeom([-n, -n + 1], [1], 1). - Detlef Meya, May 21 2024

A240558 a(n) = 2^n*n!/((floor(n/2)+1)*floor(n/2)!^2).

Original entry on oeis.org

1, 2, 4, 24, 32, 320, 320, 4480, 3584, 64512, 43008, 946176, 540672, 14057472, 7028736, 210862080, 93716480, 3186360320, 1274544128, 48432676864, 17611882496, 739699064832, 246566354944, 11342052327424, 3489862254592, 174493112729600, 49855175065600
Offset: 0

Views

Author

Peter Luschny, Apr 14 2014

Keywords

Crossrefs

Programs

  • Maple
    A240558 := n -> 2^n*n!/((iquo(n,2)+1)*iquo(n,2)!^2):
    seq(A240558(n), n=0..30);
  • Mathematica
    Table[SeriesCoefficient[((I*(2*x*(8*x+1)-1))/Sqrt[16*x^2-1]-2*x+1) /(8*x^2), {x,0,n}], {n,0,22}]
  • PARI
    x='x+O('x^50); Vec(round((I*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2)) \\ G. C. Greubel, Apr 05 2017
  • Sage
    def A240558():
        x, n = 1, 1
        while True:
            yield x
            m = 2*n if is_odd(n) else 8/(n+2)
            x *= m
            n += 1
    a = A240558(); [next(a) for i in range(36)]
    

Formula

O.g.f.: ((i*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2), where i=sqrt(-1).
For a recurrence see the Sage program.
a(n) = 2^n*A057977(n)
a(2*k) = A151403(k) = 2^k*A151374(k) = 4^k*A000108(k).
a(2*k+1) = A099045(k+1) = 2^k*A069723(k+2) = 4^k*A000984(k+1).
From Peter Luschny, Jan 31 2015: (Start)
a(n) = Sum_{k=0..n} A056040(n)*C(n,k)/(floor(n/2)+1).
a(n) = Sum_{k=0..n} n!*C(n,k)/((floor(n/2)+1)*(floor(n/2)!)^2).
a(n) = 2^n*n!*[x^n]((x+1)*hypergeom([],[2],x^2)).
a(n) ~ 2^(n+N)/((n+1)^*sqrt(Pi*(2*N+1))); here = 1 if n is even, 0 otherwise and N = n++1. (End)
Conjecture: -(n+2)*(n^2-5)*a(n) +8*(-2*n-1)*a(n-1) +16*(n-1)*(n^2+2*n-4)*a(n-2)=0. - R. J. Mathar, Jun 14 2016

A370282 Coefficient of x^n in the expansion of 1/( (1-x)^3 - x )^n.

Original entry on oeis.org

1, 4, 42, 499, 6250, 80634, 1060269, 14127852, 190102482, 2577310285, 35150819132, 481734467955, 6628611532621, 91517611501008, 1267182734325900, 17589579427715124, 244689432718144770, 3410399867585709501, 47613678409439712861, 665756829352248572725
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(4*n+2*k-1, n-k));

Formula

a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(4*n+2*k-1,n-k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * ((1-x)^3 - x) ). See A369215.
Previous Showing 11-20 of 24 results. Next