A099830
Smallest perimeter S such that exactly n distinct Pythagorean triangles with this perimeter can be constructed.
Original entry on oeis.org
12, 60, 120, 240, 420, 720, 1320, 840, 2640, 1680, 3360, 2520, 4620, 7920, 7560, 5040, 10080, 17160, 10920, 9240, 40320, 25200, 28560, 21840, 18480, 60480, 41580, 46200, 36960, 32760, 27720, 78540, 60060, 129360, 134640, 115920, 85680, 65520, 83160
Offset: 1
a(7)=1320 because 1320 is the smallest possible perimeter for which exactly 7 different Pythgorean triangles exist: 1320 = 110+600+610 = 120+594+606 = 220+528+572 = 231+520+569 = 264+495+561 = 330+440+550 = 352+420+548.
Cf.
A099829 first perimeter producing at least n Pythagorean triangles,
A009096 ordered perimeters of Pythagorean triangles,
A001399,
A069905 partitions into 3 parts.
A215521
Number T(n,k) of distinct values of multinomial coefficients M(n;lambda), where lambda ranges over all partitions of n with largest part = k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 4, 7, 6, 5, 3, 2, 1, 1, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 1, 5, 10, 10, 10, 7, 5, 3, 2, 1, 1, 1, 6, 12, 14, 12, 11, 7, 5, 3, 2, 1, 1, 1, 6, 14, 16, 17, 13, 11, 7, 5, 3, 2, 1, 1
Offset: 1
T(4,2) = 2 = |{4!/(2!*2!), 4!/(2!*1!*1!)}| = |{6, 12}|.
T(7,4) = 3 = |{35, 105, 210}|.
T(8,3) = 5 = |{560, 1120, 1680, 3360, 6720}|.
T(11,4) = 10 = |{11550, 34650, 46200, 69300, 138600, 207900, 277200, 415800, 831600, 1663200}|.
Triangle T(n,k) begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 2, 2, 1, 1;
1, 3, 3, 2, 1, 1;
1, 3, 4, 3, 2, 1, 1;
1, 4, 5, 5, 3, 2, 1, 1;
1, 4, 7, 6, 5, 3, 2, 1, 1;
1, 5, 8, 9, 7, 5, 3, 2, 1, 1;
1, 5, 10, 10, 10, 7, 5, 3, 2, 1, 1;
...
-
b:= proc(n, i) option remember; `if`(n=0, {1}, `if`(i<1, {},
{b(n, i-1)[], seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)}))
end:
T:= (n, k)-> nops(b(n-k, min(k, n-k))):
seq(seq(T(n, k), k=1..n), n=1..15);
-
b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Join[b[n, i - 1], Table[ b[n - i*j, i - 1] *i!^j, {j, 1, n/i}] // Flatten]] // Union]; T[n_, k_] := Length[b[n, k]]; Table[Table[T[n - k, Min[k, n - k]], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)
A309513
Number of even parts in the partitions of n into 3 parts.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 5, 4, 7, 8, 12, 12, 18, 18, 24, 24, 31, 32, 41, 40, 49, 50, 60, 60, 72, 72, 84, 84, 97, 98, 113, 112, 127, 128, 144, 144, 162, 162, 180, 180, 199, 200, 221, 220, 241, 242, 264, 264, 288, 288, 312, 312, 337, 338, 365, 364, 391, 392, 420, 420
Offset: 0
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 0 1 2 5 4 7 8 12 ...
-----------------------------------------------------------------------
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1,1,-1,0,0,-1,1).
-
Table[Sum[Sum[Mod[i - 1, 2] + Mod[j - 1, 2] + Mod[n - i - j - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
A374702
Number of integer compositions of n whose leaders of maximal weakly decreasing runs sum to 3. Column k = 3 of A374748.
Original entry on oeis.org
0, 0, 0, 2, 3, 6, 9, 13, 17, 23, 28, 35, 42, 50, 58, 68, 77, 88, 99, 111, 123, 137, 150, 165, 180, 196, 212, 230, 247, 266, 285, 305, 325, 347, 368, 391, 414, 438, 462, 488, 513, 540, 567, 595, 623, 653, 682, 713, 744, 776, 808, 842, 875, 910, 945, 981
Offset: 0
The a(0) = 0 through a(8) = 17 compositions:
. . . (3) (31) (32) (33) (322) (332)
(12) (112) (122) (321) (331) (3221)
(121) (311) (1122) (1222) (3311)
(1112) (1221) (3211) (11222)
(1121) (3111) (11122) (12221)
(1211) (11112) (11221) (32111)
(11121) (12211) (111122)
(11211) (31111) (111221)
(12111) (111112) (112211)
(111121) (122111)
(111211) (311111)
(112111) (1111112)
(121111) (1111121)
(1111211)
(1112111)
(1121111)
(1211111)
For reversed partitions we appear to have
A137719.
For length instead of sum we have
A241627.
For leaders of constant runs we have
A373952.
A003242 counts anti-run compositions.
A011782 counts integer compositions.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,GreaterEqual]]==3&]],{n,0,15}]
-
seq(n)={Vec((2 + x + x^2)/((1 + x + x^2)*(1 + x)*(1 - x)^3) + O(x^(n-2)), -n-1)} \\ Andrew Howroyd, Aug 14 2024
A242089
Number of triples (a,b,c) with 0 < a < b < c < p and a + b + c == 0 mod p, where p = prime(n).
Original entry on oeis.org
0, 0, 0, 2, 10, 16, 32, 42, 66, 112, 130, 192, 240, 266, 322, 416, 522, 560, 682, 770, 816, 962, 1066, 1232, 1472, 1600, 1666, 1802, 1872, 2016, 2562, 2730, 2992, 3082, 3552, 3650, 3952, 4266, 4482, 4816, 5162, 5280, 5890, 6016, 6272, 6402, 7210, 8066, 8362, 8512
Offset: 1
For prime(4) = 7 there are 2 triples (a,b,c) with 0 < a < b < c < 7 and a + b + c == 0 mod 7, namely, 1+2+4 = 7 and 3+5+6 = 2*7, so a(4) = 2.
-
Table[ Length[ Reduce[ Mod[a + b + c, Prime[n]] == 0 && 0 < a < b < c < Prime[n], {a, b, c}, Integers]], {n, 40}]
-
a(n) = 2 * round((prime(n) - 3)^2/12) \\ David A. Corneth, May 27 2025
A306403
The number of distinct products that can be formed by multiplying the parts of a partition of n into 3 positive parts.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 19, 20, 23, 27, 29, 32, 34, 39, 43, 47, 51, 53, 59, 58, 67, 73, 75, 81, 88, 91, 93, 106, 109, 114, 117, 128, 131, 133, 145, 154, 163, 166, 174, 181, 180, 201, 206, 209, 219, 231, 240, 238, 252, 267, 272, 289, 290, 300, 299, 323, 328, 345, 349, 366, 376
Offset: 0
-
a:= proc(n) option remember; local m, c, i, j, h, w;
m, c:= proc() true end, 0; forget(m);
for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do
h:= i*j*(n-j-i); w:= m(h);
if w then m(h):= false; c:= c+1 fi
od od; c
end:
seq(a(n), n=0..80); # Alois P. Heinz, Feb 13 2019
-
a[n_] := a[n] = Module[{m, c = 0, i, j, h, w}, m[_] = True; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n - i, 2], j++, h = i*j*(n - j - i); w = m[h]; If[w, m[h] = False; c++]]]; c];
a /@ Range[0, 80] (* Jean-François Alcover, Feb 24 2020, after Alois P. Heinz *)
A307018
Total number of parts of size 3 in the partitions of n into parts of size 2 and 3.
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 2, 1, 2, 4, 2, 4, 6, 4, 6, 9, 6, 9, 12, 9, 12, 16, 12, 16, 20, 16, 20, 25, 20, 25, 30, 25, 30, 36, 30, 36, 42, 36, 42, 49, 42, 49, 56, 49, 56, 64, 56, 64, 72, 64, 72, 81, 72, 81, 90, 81, 90, 100, 90, 100, 110, 100, 110, 121, 110, 121, 132
Offset: 0
-
a:=[0,0,0,1,0,1,2,1];; for n in [9..80] do a[n]:=a[n-2]+2*a[n-3] -2*a[n-5]-a[n-6]+a[n-8]; od; a; # G. C. Greubel, Apr 03 2019
-
R:=PowerSeriesRing(Integers(), 80); [0,0,0] cat Coefficients(R!( x^3/((1-x^2)*(1-x^3)^2) )); // G. C. Greubel, Apr 03 2019
-
LinearRecurrence[{0,1,2,0,-2,-1,0,1}, {0,0,0,1,0,1,2,1}, 80] (* G. C. Greubel, Apr 03 2019 *)
Table[(6n(2+n)-5-27(-1)^n+8(4+3n)Cos[2n Pi/3]-8Sqrt[3]n Sin[2n Pi/3])/216,{n,0,66}] (* Stefano Spezia, Apr 21 2022 *)
-
my(x='x+O('x^80)); concat([0,0,0], Vec(x^3/((1-x^2)*(1-x^3)^2))) \\ G. C. Greubel, Apr 03 2019
-
(x^3/((1-x^2)*(1-x^3)^2)).series(x, 80).coefficients(x, sparse=False) # G. C. Greubel, Apr 03 2019
A307872
Sum of the smallest parts in the partitions of n into 3 parts.
Original entry on oeis.org
0, 0, 1, 1, 2, 4, 5, 7, 11, 13, 17, 23, 27, 33, 42, 48, 57, 69, 78, 90, 106, 118, 134, 154, 170, 190, 215, 235, 260, 290, 315, 345, 381, 411, 447, 489, 525, 567, 616, 658, 707, 763, 812, 868, 932, 988, 1052, 1124, 1188, 1260, 1341, 1413, 1494, 1584, 1665
Offset: 1
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 1 1 2 4 5 7 11 13 ...
-----------------------------------------------------------------------
-
Table[Sum[Sum[k, {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
Table[Total[IntegerPartitions[n,{3}][[;;,-1]]],{n,100}] (* Harvey P. Dale, Jan 14 2024 *)
-
a(n) = sum(k=1, n\3, sum(i=k, (n-k)\2, k)); \\ Michel Marcus, May 02 2019
A309405
Number of prime parts in the partitions of n into 3 parts.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 5, 7, 8, 12, 12, 16, 17, 21, 22, 29, 29, 34, 35, 41, 42, 50, 50, 58, 59, 67, 68, 77, 78, 86, 87, 96, 97, 108, 108, 119, 120, 130, 131, 144, 144, 155, 156, 168, 169, 182, 183, 197, 198, 212, 213, 228, 228, 242, 243, 258, 259, 275, 275, 291
Offset: 0
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 0 1 3 5 7 8 12 12 ...
-----------------------------------------------------------------------
-
Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) + (PrimePi[j] - PrimePi[j - 1]) + (PrimePi[n - i - j] - PrimePi[n - i - j - 1]), {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
Table[Count[Flatten[IntegerPartitions[n,{3}]],?PrimeQ],{n,0,60}] (* _Harvey P. Dale, Jun 13 2025 *)
A348536
Number of partitions of n into 3 parts that divide n.
Original entry on oeis.org
0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0
Offset: 1
a(12) = 3 via 2 + 4 + 6 = 3 + 3 + 6 = 4 + 4 + 4. - _David A. Corneth_, Oct 08 2022
-
Block[{c}, c[n_] := 1 - Ceiling[n] + Floor[n]; Array[Sum[Sum[c[#/j]*c[#/i]*c[#/(# - i - j)], {i, j, Floor[(# - j)/2]} ], {j, Floor[#/3]} ] &, 105]] (* Michael De Vlieger, Oct 21 2021 *)
Table[Count[IntegerPartitions[n,{3}],?(Mod[n,#]=={0,0,0}&)],{n,100}] (* _Harvey P. Dale, Apr 07 2025 *)
-
a(n) = [0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 3][(n-1)%12 + 1] \\ David A. Corneth, Oct 08 2022
-
a(n) = { my(d = divisors(n), res = 0); d = d[^#d]; forvec(x = vector(2, i, [1, #d]), s = d[x[1]] + d[x[2]]; if(n - s >= d[x[2]], if(n % (n - s) == 0, print([d[x[1]], d[x[2]], n-s]); res++ ) ) , 1 ); res } \\ David A. Corneth, Oct 08 2022
Comments