cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A070434 a(n) = n^2 mod 11.

Original entry on oeis.org

0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-11).
G.f.: ( -x*(1+x)*(x^8+3*x^7+6*x^6-x^5+4*x^4-x^3+6*x^2+3*x+1) ) / ( (x-1)*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10) ). (End)
a(n) = A010880(n^2). - Michel Marcus, Mar 24 2016

A070432 Period 4: repeat [0, 1, 4, 1]; a(n) = n^2 mod 8.

Original entry on oeis.org

0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Comments

Multiplicative with a(2) = 4, a(2^e) = 0 if e >= 2, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005

Examples

			G.f. = x + 4*x^2 + x^3 + x^5 + 4*x^6 + x^7 + x^9 + 4*x^10 + x^11 + x^13 + ...
		

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-4) for n > 3.
G.f.: -x*(1+4*x+x^2) / ( (x-1)*(1+x)*(x^2+1) ). (End)
Dirichlet g.f.: zeta(s)*(1 + 4*2^(-s))*(1 - 2^(-s)). - R. J. Mathar, Mar 10 2011
a(n) = (n mod 2) + 4*floor(((n+1) mod 4)/3). - Gary Detlefs, Dec 29 2011
From Wesley Ivan Hurt, Mar 19 2015: (Start)
a(n) = (((n+1) mod 4) - 1)^2.
a(n) = (1 + (-1)^n - 2(-1)^((2n + 1 - (-1)^n)/4))^2/4. (End)
E.g.f.: 2*cosh(x) + sinh(x) - 2*cos(x). - G. C. Greubel, Mar 22 2016
a(n) = (3 + cos(n*Pi) - 4*cos(n*Pi/2))/2. - Wesley Ivan Hurt, Dec 21 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Dec 22 2016

A186646 Every fourth term of the sequence of natural numbers 1,2,3,4,... is halved.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 4, 9, 10, 11, 6, 13, 14, 15, 8, 17, 18, 19, 10, 21, 22, 23, 12, 25, 26, 27, 14, 29, 30, 31, 16, 33, 34, 35, 18, 37, 38, 39, 20, 41, 42, 43, 22, 45, 46, 47, 24, 49, 50, 51, 26, 53, 54, 55, 28, 57, 58, 59, 30, 61, 62, 63, 32, 65, 66, 67, 34, 69, 70, 71, 36, 73, 74, 75, 38, 77, 78, 79, 40, 81, 82, 83, 42, 85, 86, 87, 44, 89, 90, 91, 46, 93, 94, 95, 48, 97, 98, 99
Offset: 1

Views

Author

R. J. Mathar, Feb 25 2011

Keywords

Comments

a(n) is the length of the period of the sequence k^2 mod n, k=1,2,3,4,..., i.e., the length of the period of A000035 (n=2), A011655 (n=3), A000035 (n=4), A070430 (n=5), A070431 (n=6), A053879 (n=7), A070432 (n=8), A070433 (n=9), A008959 (n=10), A070434 (n=11), A070435 (n=12) etc.
From Franklin T. Adams-Watters, Feb 24 2011: (Start)
Clearly if gcd(n,m) = 1, a(nm) = lcm(a(n),a(m)), so it suffices to establish this for prime powers.
If p is a prime, the period must divide p, but k^2 mod p is not constant, so a(p) = p.
a(p^e), e > 1, must be divisible by a(p^(e-1)), and must divide p^e. If p != 2, (p^(e-1)+1)^2 = p^(2e-2)+2p^(e-1)+1 == 2p^(e-1)+1 (mod p^2), so a(p^e) != p^(e-1); it must then be e.
By inspection, a(4) = 2 and a(8) = 4.
This leaves a(2^e), e > 3. But then (2^(e-2)+1)^2 = 2^(2e-4)+2^(e-1)+1 == 2^(e-1)+1 (mod 2^e), so a(n) > 2^(e-2). On the other hand, (2^(e-1)+c)^2 = 2^(2e-2)+c2^e+c^2 == c^2 (mod 2^e). Hence the period is 2^(e-1). (End)

Crossrefs

Cf. A000224 (size of the set of moduli of k^2 mod n), A019554, A060819, A061037, A090129, A142705, A164115, A283971.

Programs

  • Maple
    A186646 := proc(n) if n mod 4 = 0 then n/2 ; else n ; end if; end proc ;
  • Mathematica
    Flatten[Table[{n,n+1,n+2,(n+3)/2},{n,1,101,4}]] (* or *) LinearRecurrence[ {0,0,0,2,0,0,0,-1},{1,2,3,2,5,6,7,4},100] (* Harvey P. Dale, May 30 2014 *)
    Table[n (7 - (-1)^n - 2 Cos[n Pi/2])/8, {n, 100}] (* Federico Provvedi , Jan 02 2018 *)
  • PARI
    a(n)=if(n%4,n,n/2) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    def A186646(n): return n if n&3 else n>>1 # Chai Wah Wu, Jan 10 2023

Formula

a(n) = 2*a(n-4) - a(n-8).
a(4n) = 2n; a(4n+1) = 4n+1; a(4n+2) = 4n+2; a(4n+3) = 4n+3.
a(n) = n/A164115(n).
G.f.: x*(1 + 2*x + 3*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + x^6) / ( (x-1)^2*(1+x)^2*(x^2+1)^2 ).
Dirichlet g.f.: (1-2/4^s)*zeta(s-1).
A019554(n) | a(n). - Charles R Greathouse IV, Feb 24 2011
a(n) = n*(7 - (-1)^n - (-i)^n - i^n)/8, with i=sqrt(-1). - Bruno Berselli, Feb 25 2011
Multiplicative with a(p^e)=2^e if p=2 and e<=1; a(p^e)=2^(e-1) if p=2 and e>=2; a(p^e)=p^e otherwise. - David W. Wilson, Feb 26 2011
a(n) * A060819(n+2) = A142705(n+1) = A061037(2n+2). - Paul Curtz, Mar 02 2011
a(n) = n - (n/2)*floor(((n-1) mod 4)/3). - Gary Detlefs, Apr 14 2013
a(2^n) = A090129(n+1). - R. J. Mathar, Oct 09 2014
a(n) = n*(7 - (-1)^n - 2*cos(n*Pi/2))/8. - Federico Provvedi, Jan 02 2018
E.g.f.: (1/4)*x*(4*cosh(x) + sin(x) + 3*sinh(x)). - Stefano Spezia, Jan 26 2020
Sum_{k=1..n} a(k) ~ (7/16) * n^2. - Amiram Eldar, Nov 28 2022

A070433 a(n) = n^2 mod 9.

Original entry on oeis.org

0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Comments

Also decimal expansion of 4692347/333333333. - Enrique Pérez Herrero, Nov 27 2022

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-9).
G.f.: ( -x*(1+x)*(x^6+3*x^5-3*x^4+10*x^3-3*x^2+3*x+1) ) / ( (x-1)*(1+x+x^2)*(x^6+x^3+1) ). (End)
a(n) = A010878(A000290(n)) = A010878(n^2). - Enrique Pérez Herrero, Nov 27 2022

A174452 a(n) = n^2 mod 1000.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 24, 89, 156, 225, 296, 369, 444, 521, 600, 681, 764, 849, 936, 25, 116, 209, 304, 401, 500, 601, 704, 809, 916, 25
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 21 2010

Keywords

Comments

a(n) = A000290(n) for n < 32, but a(32) = 24;
A008959(n) = a(n) mod 10; A002015(n) = a(n) mod 100;
periodic with period 500: a(n+500)=a(n) and a(250*n+k)=a(250*n-k) for k <= 250*n;
a(n) = (n mod 1000)^2 mod 1000;
a(m*n) = a(m)*a(n) mod 1000;
A122986 gives the range of this sequence;
a(n) = n for n = 0, 1, and 376.

Examples

			Some calculations for n=982451653, to be realized by hand:
a(n) = (53^2 + 200*6*3) mod 1000 = 6409 mod 1000 = 409;
a(n) = (653^2) mod 1000 = 426409 mod 1000 = 409;
a(n) = a(n mod 500) = a(153) = 409;
a(n) = 965211250482432409 mod 1000 = 409.
		

Crossrefs

Programs

Formula

a(n) = ((n mod 100)^2 + 200 * (floor(n/100) mod 10) * (n mod 10)) mod 1000.

A239418 Numbers n such that n^10 - 10 is prime.

Original entry on oeis.org

21, 201, 267, 321, 369, 459, 537, 651, 669, 699, 723, 753, 1071, 1113, 1197, 1203, 1209, 1323, 1401, 1503, 1587, 1647, 1773, 1791, 1797, 1917, 1941, 2007, 2139, 2223, 2427, 2493, 2613, 2733, 2769, 2787, 2847, 3147, 3249, 3267, 3297, 3399, 3423, 3441, 3771
Offset: 1

Views

Author

Derek Orr, Mar 17 2014

Keywords

Comments

All of the numbers in this sequence are odd multiples of 3 and, thus, congruent to 3 (mod 6).
The tenth powers modulo 6 are 1, 4, 3, 4, 1, 0, ... (A070431). Subtracting 10 (still modulo 6), we get 3, 0, 5, 0, 3, 2, ... which means that only n = 3 mod 6 can produce a potential prime p = 5 mod 6.

Examples

			21^10 - 10 = 16679880978191 is prime. Thus, 21 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[#^10 - 10] &] (* Alonso del Arte, Mar 18 2014 *)
  • PARI
    is(n)=isprime(n^10-10) \\ Charles R Greathouse IV, Feb 20 2017
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**10-10)}
    

A002015 a(n) = n^2 reduced mod 100.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29, 76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44, 21, 0, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81
Offset: 0

Views

Author

Keywords

Comments

Periodic with period 50: (0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29, 76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44, 21, 0, 81, 64, 49, 36, 25, 16, 9, 4, 1) and next term is 0. The period is symmetrical about the "midpoint" 25. - Zak Seidov, Oct 26 2009
A010461 gives the range of this sequence. - Reinhard Zumkeller, Mar 21 2010

Crossrefs

Programs

Formula

From Reinhard Zumkeller, Mar 21 2010: (Start)
a(n) = (n mod 10) * ((n mod 10) + 20 * ((n\10) mod 10)) mod 100.
a(n) = A174452(n) mod 100; A008959(n) = a(n) mod 10;
a(m*n) = a(m)*a(n) mod 100;
a(n) = (n mod 100)^2 mod 100;
a(n) = n for n = 0, 1, and 25. (End)

Extensions

Definition rephrased at the suggestion of Zak Seidov, Oct 26 2009

A034796 a(1)=1, a(n-1) is a square mod a(n), and a(n) > a(n-1).

Original entry on oeis.org

1, 2, 7, 9, 10, 13, 17, 19, 25, 26, 34, 37, 41, 43, 49, 50, 62, 67, 73, 74, 82, 87, 89, 94, 97, 99, 105, 106, 109, 113, 121, 122, 127, 129, 130, 133, 137, 139, 145, 146, 157, 162, 167, 173, 178, 181, 185, 187, 193, 194, 206, 214, 217, 218, 223, 237, 241, 243, 249
Offset: 1

Views

Author

Keywords

Comments

a(n) is the smallest number larger than a(n-1) such that a(n-1) is a quadratic residue mod a(n). - R. J. Mathar, Jul 27 2015

Examples

			For n=3 we have a(2)=2. 2 is not quadratic residue mod 3 because the quadratic residues mod 3 are {0,1}, see A011655. 2 is not a quadratic residue mod 4 because the quadratic residues mod 4 are {0,1}, see A000035. 2 is not a quadratic residue mod 5 because the quadratic residues mod 5 are {0,1,4}, see A070430. 2 is not a quadratic residue mod 6 because the quadratic residues mod 6 are {0,1,3,4}, see A070431. 2 is a quadratic residue mod 7 because the quadratic residues mod 7 are {0,1,2,4}, see A053879. So a(3)=7. - _R. J. Mathar_, Jul 27 2015
		

Programs

  • Maple
    A034796 := proc(n)
        option remember;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if numtheory[quadres](procname(n-1),a) = 1 then
                    return a;
                end if;
            end do:
        end  if;
    end proc: # R. J. Mathar, Jul 27 2015
  • Mathematica
    residueQ[n_, k_] := Length[ Select[ Range[ Floor[k/2]]^2, Mod[#, k] == n &, 1]] == 1; a[1] = 1; a[n_] := a[n] = For[k = a[n-1] + 1, True, k++, If[residueQ[a[n-1], k], Return[k]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Aug 13 2013 *)

Extensions

Clarified definition, Joerg Arndt, Aug 14 2013

A114448 Array a(n,k) = n^k (mod k) read by antidiagonals (k>=1, n>=1).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 2, 0, 3, 4, 1, 0, 1, 0, 1, 4, 3, 2, 1, 0, 0, 1, 0, 0, 4, 3, 0, 1, 0, 1, 2, 1, 1, 1, 4, 1, 8, 1, 0, 0, 0, 0, 2, 0, 5, 0, 0, 4, 1, 0, 1, 1, 1, 3, 1, 6, 1, 1, 9, 2, 1, 0, 0, 2, 0, 4, 4, 0, 0, 8, 6, 3, 4, 1, 0, 1, 0, 1, 0, 3, 1, 1, 0, 5, 4, 9, 2, 1
Offset: 1

Views

Author

Leroy Quet, Feb 14 2006

Keywords

Comments

Alternate description: triangular array a(n, k) = n^k (mod k) read by rows (n > 1, 0 < k < n). This is equivalent because a(n, k) = a(n-k, k). - David Wasserman, Jan 25 2007

Examples

			2^6 = 64 and 64 (mod 6) is 4. So a(2,6) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Mod[n^k, k]; Table[a[n - k + 1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)

Extensions

More terms from David Wasserman, Jan 25 2007
Previous Showing 11-19 of 19 results.