cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A062968 n + 1 - d(n), where d(n) is the number of divisors function.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 6, 5, 7, 7, 10, 7, 12, 11, 12, 12, 16, 13, 18, 15, 18, 19, 22, 17, 23, 23, 24, 23, 28, 23, 30, 27, 30, 31, 32, 28, 36, 35, 36, 33, 40, 35, 42, 39, 40, 43, 46, 39, 47, 45, 48, 47, 52, 47, 52, 49, 54, 55, 58, 49, 60, 59, 58, 58, 62, 59, 66, 63, 66, 63, 70, 61, 72
Offset: 1

Views

Author

Jason Earls, Jul 23 2001

Keywords

Comments

A062968 = n - A070824 [From Eric Desbiaux, Dec 10 2009]

Crossrefs

Cf. A062969.
Cf. A000005, A049820. [From Omar E. Pol, Jul 16 2009]

Programs

  • Mathematica
    Table[n + 1 - DivisorSigma[0, n], {n, 1, 73}] (* Jean-François Alcover, Jun 24 2013 *)
  • PARI
    j=[]; for(n=1,150,j=concat(j,numdiv(n)-n-1)); j

Formula

a(n) = n+1-A000005(n) = A049820(n)-1. [From Omar E. Pol, Jul 16 2009]

A356069 Number of divisors of n whose prime indices cover an interval of positive integers (A073491).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 6, 2, 3, 4, 5, 2, 6, 2, 4, 3, 3, 2, 8, 3, 3, 4, 4, 2, 7, 2, 6, 3, 3, 4, 9, 2, 3, 3, 5, 2, 5, 2, 4, 6, 3, 2, 10, 3, 4, 3, 4, 2, 8, 3, 5, 3, 3, 2, 10, 2, 3, 4, 7, 3, 5, 2, 4, 3, 5, 2, 12, 2, 3, 6, 4, 4, 5, 2, 6, 5, 3, 2, 7, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2022

Keywords

Comments

First differs from A000005 at 10, 14, 20, 21, 22, ... = A307516.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(n) counted divisors of n = 1, 2, 4, 6, 12, 16, 24, 30, 36, 48, 72, 90:
  1   2   4   6  12  16  24  30  36  48  72  90
      1   2   3   6   8  12  15  18  24  36  45
          1   2   4   4   8   6  12  16  24  30
              1   3   2   6   5   9  12  18  18
                  2   1   4   3   6   8  12  15
                  1       3   2   4   6   9   9
                          2   1   3   4   8   6
                          1       2   3   6   5
                                  1   2   4   3
                                      1   3   2
                                          2   1
                                          1
		

Crossrefs

These divisors belong to A073491, a superset of A055932, complement A073492.
The initial case is A356224.
The complement in the initial case is counted by A356225.
A000005 counts divisors.
A001223 lists the prime gaps.
A056239 adds up prime indices, row sums of A112798, lengths A001222.
A328338 has third-largest divisor prime.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
    Table[Length[Select[Divisors[n],nogapQ[primeMS[#]]&]],{n,100}]

A268192 Triangle read by rows: T(n,k) is the number of partitions of weight k among the complements of the partitions of n.

Original entry on oeis.org

1, 2, 2, 1, 3, 0, 2, 2, 2, 0, 2, 1, 4, 0, 2, 1, 2, 0, 2, 2, 2, 2, 2, 0, 4, 0, 0, 2, 1, 4, 1, 2, 0, 6, 0, 2, 2, 1, 0, 2, 0, 2, 3, 2, 0, 6, 0, 2, 4, 4, 0, 2, 0, 2, 2, 0, 0, 2, 1, 4, 0, 6, 0, 2, 4, 5, 0, 6, 0, 4, 2, 0, 0, 4, 1, 0, 0, 2, 0, 2, 2, 4, 0, 2, 6, 5, 0, 6, 0, 8
Offset: 1

Views

Author

Emeric Deutsch, Feb 12 2016

Keywords

Comments

The complement of a partition p[1] >= p[2] >=...>= p[k] is p[1]-p[2], p[1]-p[3], ..., p[1]-p[k]. Its Ferrers board emerges naturally from the Ferrers board of the given partition. The weight of a partition of n is n.
Sum of entries in row n is A000041(n) (the partition numbers).
Apparently, number of entries in row n is A033638(n-1) = 1 + floor((n-1)^2/4).
T(n,0) = A000005(n) = number of divisors of n.
T(n,1) = A070824(n+1).
Sum(k*T(n,k),k>0) = A188814(n).

Examples

			Row 4 is 3,0,2; indeed, the complements of [4], [3,1], [2,2], [2,1,1], [1,1,1,1] are: empty, [2], empty, [1,1], empty; their weights are 0, 2, 0, 2, 0, respectively.
From _Gus Wiseman_, Sep 24 2019: (Start)
Triangle begins:
  1
  2
  2 1
  3 0 2
  2 2 0 2 1
  4 0 2 1 2 0 2
  2 2 2 2 0 4 0 0 2 1
  4 1 2 0 6 0 2 2 1 0 2 0 2
  3 2 0 6 0 2 4 4 0 2 0 2 2 0 0 2 1
  4 0 6 0 2 4 5 0 6 0 4 2 0 0 4 1 0 0 2 0 2
  2 4 0 2 6 5 0 6 0 8 4 0 0 6 2 0 2 2 0 2 0 2 0 0 2 1
Row  n = 8 counts the following partitions:
  8          332   53      62       71        521     4211   611      5111
  44               22211   422      2111111   32111          311111   41111
  2222                     431
  11111111                 3221
                           3311
                           221111
(End)
		

Crossrefs

Programs

  • Maple
    q := 10: with(combinat): a := proc (i, j) options operator, arrow: partition(i)[j] end proc: P[q] := 0: for j to numbpart(q) do P[q] := sort(P[q]+t^(nops(a(q, j))*max(a(q, j))-q)) end do: P[q] := P[q];
    # second Maple program:
    b:= proc(n, i, l) option remember; expand(`if`(n=0 or i=1,
          x^(`if`(l=0, 0, n*(l-i))), b(n, i-1, l)+`if`(i>n, 0,
          x^(`if`(l=0, 0, l-i))*b(n-i, i, `if`(l=0, i, l)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=1..15);  # Alois P. Heinz, Feb 12 2016
  • Mathematica
    b[n_, i_, l_] := b[n, i, l] = Expand[If[n == 0 || i == 1, x^(If[l == 0, 0, n*(l - i)]), b[n, i - 1, l] + If[i > n, 0, x^(If[l == 0, 0, l - i])*b[n - i, i, If[l == 0, i, l]]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 1, 15}] // Flatten (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Max[#]*Length[#]-n==k&]],{n,1,11},{k,0,Floor[(n-1)/2]*Ceiling[(n-1)/2]}] (* Gus Wiseman, Sep 24 2019 *)

Formula

The weight of the complement of a partition p is (number of parts of p)*(largest part of p) - weight of p.
For a given q, the Maple program yields the generating polynomial of row q.

A144925 Number of nontrivial divisors of the n-th composite number.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 2, 3, 4, 4, 2, 2, 6, 1, 2, 2, 4, 6, 4, 2, 2, 2, 7, 2, 2, 6, 6, 4, 4, 2, 8, 1, 4, 2, 4, 6, 2, 6, 2, 2, 10, 2, 4, 5, 2, 6, 4, 2, 6, 10, 2, 4, 4, 2, 6, 8, 3, 2, 10, 2, 2, 2, 6, 10, 2, 4, 2, 2, 2, 10, 4, 4, 7, 6, 6, 6, 2, 10, 6, 2, 8, 6, 2, 4, 4, 2, 2, 14, 1, 2, 2, 4, 2, 10, 6, 2, 6
Offset: 1

Views

Author

Huen Yeong Kong (cosmology(AT)pacific.net.sg), Sep 25 2008

Keywords

Comments

1 and the number itself are excluded as divisors.
First occurrence of k: 1, 2, 9, 6, 45, 14, 24, 32, 851, 42, 3531, 148, 109, 89, 58993, 138, ..., which corresponds to the composite number (A005179): 4, 6, 16, 12, 64, 24, 36, 48, 1024, 60, 4096, 192, 144, 120, 65536, 180, ..., . - Robert G. Wilson v, Aug 30 2009
Row lengths of table in A163870. - Reinhard Zumkeller, Mar 29 2014

Crossrefs

Programs

  • Haskell
    a144925 = length . a163870_row  -- Reinhard Zumkeller, Mar 29 2014
  • Mathematica
    Composite[n_Integer] := FixedPoint[n + PrimePi@# + 1 &, n + PrimePi@n + 1]; f[n_] := DivisorSigma[0, n] - 2; Table[f@ Composite@ n, {n, 101}] (* Robert G. Wilson v, Aug 30 2009 *)
    DivisorSigma[0,#]-2&/@Select[Range[300],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 15 2018 *)
  • PARI
    k=1;vector(120,n,while(isprime(k++),0);numdiv(k)-2)
    

Formula

a(n) = A070824(A002808(n)) = A000005(A002808(n)) - 2.
A144925(n) = A070824(A002808(n)) = A000005(A002808(n)) - 2. - Robert G. Wilson v, Aug 30 2009

Extensions

Sequence extended by Juri-Stepan Gerasimov, Aug 05 2009
Edited and extended by Franklin T. Adams-Watters, Aug 30 2009

A051778 Triangle read by rows, where row (n) = n mod (n-1), n mod (n-2), n mod (n-3), ...n mod 2.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 1, 2, 3, 1, 1, 1, 2, 3, 0, 2, 0, 1, 2, 3, 4, 1, 0, 1, 1, 2, 3, 4, 0, 2, 1, 0, 1, 2, 3, 4, 5, 1, 3, 2, 1, 1, 2, 3, 4, 5, 0, 2, 0, 0, 0, 1, 2, 3, 4, 5, 6, 1, 3, 1, 1, 1, 1, 2, 3, 4, 5, 6, 0, 2, 4, 2, 2, 0, 1, 2, 3, 4, 5, 6, 7, 1, 3, 0, 3, 0, 1, 1, 2, 3, 4, 5, 6, 7, 0, 2, 4, 1, 0, 1, 0
Offset: 3

Views

Author

Asher Auel, Dec 09 1999

Keywords

Comments

Central terms: a(2*n+1,n) = n for n > 0. - Reinhard Zumkeller, Dec 03 2014
Deleting column 1 of the array at A051126 gives the array A051778 in square format (see Example). - Clark Kimberling, Feb 04 2016

Examples

			row (7) = 7 mod 6, 7 mod 5, 7 mod 4, 7 mod 3, 7 mod 2 = 1, 2, 3, 1, 1.
1;
1  0 ;
1  2  1 ;
1  2  0  0 ;
1  2  3  1  1 ;
1  2  3  0  2  0 ;
1  2  3  4  1  0  1 ;
1  2  3  4  0  2  1  0 ;
1  2  3  4  5  1  3  2  1 ;
1  2  3  4  5  0  2  0  0  0 ;
1  2  3  4  5  6  1  3  1  1  1 ;
Northwest corner of square array:
1 1 1 1 1 1 1 1 1 1 1
0 2 2 2 2 2 2 2 2 2 2
1 0 3 3 3 3 3 3 3 3 3
0 1 0 4 4 4 4 4 4 4 4
1 2 1 0 5 5 5 5 5 5 5
0 0 2 1 0 6 6 6 6 6 6
1 1 3 2 1 0 7 7 7 7 7
- _Clark Kimberling_, Feb 04 2016
		

Crossrefs

Cf. A004125 (row sums), A000027 (central terms), A049820 (number of nonzeros per row), A032741 (number of ones per row), A070824 (number of zeros per row).

Programs

  • Haskell
    a051778 n k = a051778_tabl !! (n-3) !! (k-1)
    a051778_row n = a051778_tabl !! (n-3)
    a051778_tabl = map (\xs -> map (mod (head xs + 1)) xs) $
                       iterate (\xs -> (head xs + 1) : xs) [2]
    -- Reinhard Zumkeller, Dec 03 2014
  • Mathematica
    Flatten[Table[Mod[n,i],{n,3,20},{i,n-1,2,-1}]] (* Harvey P. Dale, Sep 09 2012 *)
    TableForm[Table[Mod[n, k], {n, 1, 12}, {k, 2, 12}]] (* square *)
    (* Clark Kimberling, Feb 04 2016 *)

A122181 Numbers k that can be written as k = x*y*z with 1 < x < y < z (A122180(k) > 0).

Original entry on oeis.org

24, 30, 36, 40, 42, 48, 54, 56, 60, 64, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 128, 130, 132, 135, 136, 138, 140, 144, 150, 152, 154, 156, 160, 162, 165, 168, 170, 174, 176, 180, 182, 184, 186, 189, 190, 192, 195
Offset: 1

Views

Author

Rick L. Shepherd, Aug 24 2006

Keywords

Comments

Equivalently, numbers k with at least 7 divisors (A000005(k) > 6). Equivalently, numbers k with at least 5 proper divisors (A070824(k) > 4). Equivalently, numbers k such that i) k has at least three distinct prime factors (A000977), ii) k has two distinct prime factors and four or more total prime factors (k = p^j*q^m, p,q primes, j+m >= 4), or iii) k = p^m, a perfect power (A001597) but restricted to prime p and m >= 6 [= 1+2+3] (some terms of A076470).

Examples

			a(1) = 24 = 2*3*4, a product of three distinct proper divisors (omega(24) = 2, bigomega(24) = 4).
a(2) = 30 = 2*3*5, a product of three distinct prime factors (omega(30) = 3).
a(10) = 64 = 2*4*8 [= 2^1*2^2*2^3] (omega(64) = 1, bigomega(64) = 6).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200], DivisorSigma[0, #] > 6 &] (* Amiram Eldar, Oct 05 2024 *)
  • PARI
    isok(n) = numdiv(n)>6
    
  • PARI
    isok(n) = (omega(n)==1 && bigomega(n)>5) || (omega(n)==2 && bigomega(n)>3) || (omega(n)>2)

A293813 Number of partitions of n into nontrivial divisors of n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 11, 0, 2, 2, 9, 0, 14, 0, 15, 2, 2, 0, 79, 1, 2, 4, 19, 0, 93, 0, 35, 2, 2, 2, 279, 0, 2, 2, 157, 0, 153, 0, 27, 24, 2, 0, 1075, 1, 28, 2, 31, 0, 254, 2, 261, 2, 2, 0, 7025, 0, 2, 31, 201, 2, 320, 0, 39, 2, 301, 0, 12071, 0, 2, 35, 43, 2, 427, 0, 3073
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 16 2017

Keywords

Examples

			a(6) = 2 because 6 has 4 divisors {1, 2, 3, 6} among which 2 are nontrivial divisors {2, 3} therefore we have [3, 3] and [2, 2, 2].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1, n})[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[Product[1/(1 - Boole[d[[k]] != 1 && d[[k]] != n] x^d[[k]]), {k, Length[d]}], {x, 0, n}], x, n], {n, 0, 80}]

Formula

a(n) = [x^n] Product_{d|n, 1 < d < n} 1/(1 - x^d).
a(n) = A211110(n) - 1 for n > 1.

A309307 Number of unitary divisors of n (excluding 1).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 7, 1, 1, 3, 3, 3, 3, 1, 3, 3, 3, 1, 7, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 7, 1, 3, 3, 1, 3, 7, 1, 3, 3, 7, 1, 3, 1, 3, 3, 3, 3, 7, 1, 3, 1, 3, 1, 7, 3, 3, 3, 3, 1, 7, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 21 2019

Keywords

Comments

Also the number of squarefree divisors > 1.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x] // Rest
    Table[2^PrimeNu[n] - 1, {n, 1, 100}]

Formula

G.f.: Sum_{k>=2} mu(k)^2*x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)*(zeta(s)/zeta(2*s) - 1).
a(n) = 2^omega(n) - 1.
a(n) = A000225(A001221(n)) = A034444(n) - 1.
Sum_{k=1..n} a(k) ~ 6*n*(log(n) + 2*gamma - 1 - Pi^2/6 - 12*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 16 2019
a(n) = -1 + Sum_{d|n} mu(d)^2. - Wesley Ivan Hurt, Feb 04 2022

A080945 Numbers having more than two divisors that are also suffixes in binary representation.

Original entry on oeis.org

15, 27, 30, 39, 45, 51, 54, 60, 63, 75, 78, 85, 87, 90, 99, 102, 108, 111, 119, 120, 123, 125, 126, 135, 147, 150, 153, 156, 159, 165, 170, 171, 174, 175, 180, 183, 187, 195, 198, 204, 205, 207, 216, 219, 221, 222, 231, 238, 240, 243, 245, 246, 250, 252, 255
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 25 2003

Keywords

Comments

A080942(a(n))>2; complement of A080944;
A080942(a(n))-2 < A070824(a(n)).

Crossrefs

Programs

  • Haskell
    a080945 n = a080945_list !! (n-1)
    a080945_list = filter ((> 2) . a080942) [1..]
    -- Reinhard Zumkeller, Mar 27 2014

A200213 Ordered factorizations of n with 2 distinct parts, both > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 2, 2, 0, 4, 0, 4, 2, 2, 0, 6, 0, 2, 2, 4, 0, 6, 0, 4, 2, 2, 2, 6, 0, 2, 2, 6, 0, 6, 0, 4, 4, 2, 0, 8, 0, 4, 2, 4, 0, 6, 2, 6, 2, 2, 0, 10, 0, 2, 4, 4, 2, 6, 0, 4, 2, 6, 0, 10, 0, 2, 4, 4, 2, 6, 0, 8, 2, 2, 0, 10, 2
Offset: 1

Views

Author

Peter Luschny, Nov 14 2011

Keywords

Examples

			a(24) = 6 = card({{2,12},{3,8},{4,6},{6,4},{8,3},{12,2}}).
		

Crossrefs

Programs

  • Maple
    a := n -> `if`(n<2, 0, numtheory:-tau(n) - `if`(issqr(n), 3, 2)):
    seq(a(n), n = 1..85); # Peter Luschny, Jul 10 2017
  • Mathematica
    OrderedFactorizations[1] = {{}}; OrderedFactorizations[n_?PrimeQ] := {{n}}; OrderedFactorizations[n_] := OrderedFactorizations[n] = Flatten[Function[d, Prepend[#, d] & /@ OrderedFactorizations[n/d]] /@ Rest[Divisors[n]], 1]; a[n_] := With[{of2 = Sort /@ Select[OrderedFactorizations[n], Length[#] == 2 && Length[# // Union] == 2 &] // Union}, Length[Permutations /@ of2 // Flatten[#, 1] &]];  Table[a[n], {n, 1, 85}] (* Jean-François Alcover, Jul 02 2013, copied and adapted from The Mathematica Journal *)
  • PARI
    A200213(n) = if(!n,n,sumdiv(n, d, (d<>(n/d))*(d>1)*(dAntti Karttunen, Jul 07 2017
    
  • PARI
    a(n) = if (n==1, 0, numdiv(n) - issquare(n) - 2); \\ Michel Marcus, Jul 07 2017
    
  • Scheme
    (define (A200213 n) (if (<= n 1) 0 (- (A000005 n) 2 (A010052 n)))) ;; Antti Karttunen, Jul 07 2017

Formula

From Antti Karttunen, Jul 07 & Jul 09 2017: (Start)
a(1) = 0; for n > 1, a(n) = A000005(n) - A010052(n) - 2.
For n >= 2, a(n) = A161840(n) - 2*A010052(n). (End)

Extensions

Description clarified and term a(0) removed by Antti Karttunen, Jul 09 2017
Previous Showing 11-20 of 54 results. Next