cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A355384 Number of pairs (y, v) where y is a composition of n and v is a (not necessarily contiguous) subsequence of y whose length equals the number of distinct parts in y.

Original entry on oeis.org

1, 1, 2, 4, 12, 30, 66, 164, 419, 1049, 2625, 6372, 15451, 37335, 89855, 216523, 518714, 1235897, 2930050, 6911149, 16217817, 37914515, 88304358, 204971388, 474172899, 1093547574, 2513959446, 5761735383, 13165908506, 29998936859, 68164839887, 154478212575
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2022

Keywords

Comments

If a composition is regarded as an arrow from the number of parts to the number of distinct parts, this sequence counts composable containments of compositions.

Examples

			The initial terms count the following containments:
  ()()  (1)(1)  (2)(2)   (3)(3)    (4)(4)
                (11)(1)  (21)(21)  (31)(31)
                         (12)(12)  (13)(13)
                         (111)(1)  (22)(2)
                                   (211)(11)
                                   (211)(21)
                                   (121)(11)
                                   (121)(12)
                                   (121)(21)
                                   (112)(11)
                                   (112)(12)
                                   (1111)(1)
		

Crossrefs

The homog. case is A032020, w/o containment A355388 (partitions A355385).
For partitions we have A355383, homog. A000009, w/ multiplicity A339006.
A000244 counts splittings of compositions, for partitions A323583.

Programs

  • Mathematica
    Table[Sum[Length[Union[Subsets[y,{Length[Union[y]]}]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,5}]

Extensions

a(21) and beyond from Christian Sievers, May 08 2025

A265951 Expansion of Product_{k>=1} 1/(1 - 2*k*x^k).

Original entry on oeis.org

1, 2, 8, 22, 68, 170, 484, 1166, 3048, 7274, 18000, 41806, 100684, 229258, 535692, 1206230, 2758944, 6123650, 13798088, 30284894, 67272756, 146426002, 321513284, 693944814, 1510245960, 3236648578, 6985572672, 14885926182, 31904642348, 67618415690
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          2^n, b(n, i-1) +i*2*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * n * 2^n, where c = 1/2 * Product_{m>=3} 1/(1 - m/2^(m-1)) = 9.281573281805057363737677116134642024212942973614535341005126953773818...

A303346 Expansion of Product_{n>=1} ((1 + 2*x^n)/(1 - 2*x^n))^(1/2).

Original entry on oeis.org

1, 2, 4, 10, 18, 38, 72, 142, 260, 510, 940, 1814, 3362, 6490, 12112, 23466, 44114, 85766, 162516, 317190, 604806, 1184682, 2271248, 4461514, 8591784, 16916490, 32696708, 64496130, 125037142, 247007142, 480077432, 949510526, 1849375796, 3661330398, 7144215452
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + 2*x^k)/(1 - 2*x^k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
    nmax = 30; CoefficientList[Series[Sqrt[-QPochhammer[-2, x] / (3*QPochhammer[2, x])], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+2*x^k)/(1-2*x^k))^(1/2)))

Formula

a(n) ~ 2^n / sqrt(c*Pi*n), where c = A048651 * A083864 = 1/2 * Product_{j>=1} (2^j-1)/(2^j+1) = 0.06056210400129025123042464659093375290492912341... - Vaclav Kotesovec, Apr 22 2018

A070877 Expansion of Product_{k>=1} (1 - 2x^k).

Original entry on oeis.org

1, -2, -2, 2, 2, 6, -2, 2, -6, -10, -2, -6, -6, 6, 22, -6, 26, 14, 22, -6, -14, -2, -10, -46, -46, -50, -18, 18, -78, 22, 14, 82, 42, 166, 14, 42, 170, 118, 6, 106, -150, -66, -122, -118, -62, -370, -282, -350, -126, -354, -2, -94, 226, -250, 30, 450, 730, 342, 894, 474, 890, 358, 758, 58, 1210, 782, -778, 26, -270, -1250
Offset: 0

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 24 2002

Keywords

Examples

			G.f. = 1 - 2*x - 2*x^2 + 2*x^3 + 2*x^4 + 6*x^5 - 2*x^6 + 2*x^7 - 6*x^8 - 10*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ Product[(1 - 2t^k), {k, 1, 80}], {t, 0, 80}], t]
    a[ n_] := SeriesCoefficient[ -QPochhammer[2, x], {x, 0, n}]; (* Michael Somos, Mar 11 2014 *)
  • PARI
    N=66; q='q+O('q^N); Vec(sum(n=0, N, (-2)^n*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014
    
  • PARI
    N=66; q='q+O('q^N); t2=Vec( prod(k=1, N, 1-2*q^k) ) \\ Joerg Arndt, Mar 11 2014

Extensions

Edited by Robert G. Wilson v, May 26 2002
Corrected by Vincenzo Librandi, Mar 11 2014

A355383 Number of pairs (y, v), where y is a partition of n and v is a sub-multiset of y whose cardinality equals the number of distinct parts in y.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 16, 26, 42, 64, 100, 150, 224, 330, 482, 697, 999, 1418, 1996, 2794, 3879, 5355, 7343, 10018, 13583, 18338, 24618, 32917, 43790, 58043, 76591, 100716, 131906, 172194, 223966, 290423, 375318, 483668, 621368, 796138, 1017146
Offset: 0

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

If a partition is regarded as an arrow from the number of parts to the number of distinct parts, this sequence counts composable containments of partitions.

Examples

			The a(0) = 1 through a(5) = 10 pairs:
  ()()  (1)(1)  (2)(2)   (3)(3)    (4)(4)     (5)(5)
                (11)(1)  (21)(21)  (31)(31)   (41)(41)
                         (111)(1)  (22)(2)    (32)(32)
                                   (211)(11)  (311)(11)
                                   (211)(21)  (311)(31)
                                   (1111)(1)  (221)(21)
                                              (221)(22)
                                              (2111)(11)
                                              (2111)(21)
                                              (11111)(1)
		

Crossrefs

With multiplicity we have A339006.
The version for compositions is A355384.
The homogeneous version w/o containment is A355385, compositions A355388.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.

Programs

  • Mathematica
    Table[Sum[Length[Union[Subsets[y,{Length[Union[y]]}]]],{y,IntegerPartitions[n]}],{n,0,15}]

A355385 Number of pairs (y, v) of integer partitions of n where the length of v equals the number of distinct parts in y.

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 25, 43, 81, 141, 243, 409, 699, 1132, 1844, 2995, 4744, 7408, 11655, 17839, 27509, 41546, 62879, 93537, 139974, 205547, 302714, 440097, 640968, 921774, 1327538, 1891548, 2696635, 3809860, 5380257, 7540778, 10561566, 14687109, 20408170, 28183998, 38882009
Offset: 0

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

Also the number of composable pairs of integer partitions of n, where a partition is regarded as an arrow from (number of parts) to (number of distinct parts). Is there a nice choice of a composition operation making this into an associative category?

Examples

			The a(0) = 1 through a(5) = 10 pairs:
  ()()  (1)(1)  (2)(2)   (3)(3)    (4)(4)     (5)(5)
                (11)(2)  (21)(21)  (31)(31)   (41)(41)
                         (111)(3)  (31)(22)   (41)(32)
                                   (22)(4)    (32)(41)
                                   (211)(31)  (32)(32)
                                   (211)(22)  (311)(41)
                                   (1111)(4)  (311)(32)
                                              (221)(41)
                                              (221)(32)
                                              (2111)(41)
                                              (2111)(32)
                                              (11111)(5)
		

Crossrefs

The inhomogeneous version with containment and multiplicity is A339006.
The inhomogeneous version with containment is A355383.
The inhomogeneous version with containment for compositions is A355384.
The version for compositions is A355388.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.
A323583 counts splittings of partitions.

Programs

  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions[n],2],Length[Union[#[[1]]]]==Length[#[[2]]]&]],{n,0,15}]
  • PARI
    \\ P gives A008284 and R gives A116608 as g.f.'s.
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(n,y) = {prod(k=1, n, 1 + y/(1 - x^k) - y + O(x*x^n))}
    seq(n) = {my(g=Vec(P(n,y)), h=Vec(R(n,y))); vector(n+1, i, my(p=g[i], q=h[i]); sum(j=0, poldegree(q), polcoef(p,j)*polcoef(q,j)))} \\ Andrew Howroyd, Dec 31 2022

Formula

a(n) = Sum_{j >= 1} A116608(n,j) * A008284(n,j) for n > 0. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A355388 Number of composable pairs (y, v) of integer compositions of n, where a composition is regarded as an arrow from the number of parts to the number of distinct parts.

Original entry on oeis.org

1, 1, 2, 6, 18, 58, 174, 536, 1656, 4947, 14800, 43157, 126572, 364070, 1039926, 2938898, 8223400, 22846370, 62930113, 172177400, 467002792, 1259736804, 3371190792, 8973530491, 23728305128, 62421018163, 163255839779, 424842462529, 1100006243934, 2834558927244, 7270915592897
Offset: 0

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

Being composable here means that the length of v equals the number of distinct parts in y.

Examples

			The a(0) = 1 through a(4) = 18 pairs:
  ()()  (1)(1)  (2)(2)   (3)(3)    (4)(4)
                (11)(2)  (21)(21)  (31)(31)
                         (21)(12)  (31)(13)
                         (12)(21)  (31)(22)
                         (12)(12)  (13)(31)
                         (111)(3)  (13)(13)
                                   (13)(22)
                                   (22)(4)
                                   (211)(31)
                                   (211)(13)
                                   (211)(22)
                                   (121)(31)
                                   (121)(13)
                                   (121)(22)
                                   (112)(31)
                                   (112)(13)
                                   (112)(22)
                                   (1111)(4)
		

Crossrefs

The case with containment is A032020.
The inhomogeneous version with containment is A355384, partitions A355383.
The version for partitions is A355385, with containment A000009.
A133494 counts compositions of each part of a composition, strict A336139.
A323583 counts splittings of partitions.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          expand(add(b(n-i*j, i-1, p+j)/j!*`if`(j=0, 1, x), j=0..n/i))))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*binomial(n-1, i-1), i=0..degree(p)))(b(n$2, 0)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 01 2023
  • Mathematica
    Table[Length[Select[Tuples[Join@@Permutations/@IntegerPartitions[n],2], Length[Union[#[[1]]]]==Length[#[[2]]]&]],{n,0,10}]
  • PARI
    a(n) = {if(n==0, 1, my(s=0); forpart(p=n, p=Vec(p); my(S=Set(p)); s += binomial(n-1, #S-1)*(#p)!/prod(i=1, #S, my(c=#select(t->t==S[i], p)); c! )); s)} \\ Andrew Howroyd, Jan 01 2023
    
  • PARI
    \\ for larger n.
    a(n) = { local(Cache=Map());
      my(F(r,m,p,q) = my(key=[r,m,p,q], z); if(!mapisdefined(Cache, key, &z),
      z = if(m==0, if(r==0, p!*binomial(n-1, q-1)), self()(r, m-1, p, q) + sum(j=1, r\m, self()(r-j*m, min(m-1, r-j*m), p+j, q+1)/j!));
      mapput(Cache, key, z) ); z);
      if(n==0, 1, F(n, n, 0, 0))
    } \\ Andrew Howroyd, Jan 01 2023

Formula

a(n) = Sum_{k>=1} binomial(n-1, k-1)*A235998(n, k) for n > 0. - Andrew Howroyd, Jan 01 2023

Extensions

Terms a(14) and beyond from Andrew Howroyd, Jan 01 2023

A071109 Expansion of Product_{k>=1} 1/(1+2*x^k).

Original entry on oeis.org

1, -2, 2, -6, 14, -26, 50, -102, 214, -426, 834, -1678, 3398, -6778, 13482, -27022, 54198, -108306, 216346, -432878, 866334, -1732386, 3463626, -6927926, 13858350, -27715378, 55426002, -110855030, 221719582, -443433610, 886848930, -1773709078, 3547455846
Offset: 0

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 27 2002

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 + 2*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^k*2^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    (O[x]^30 + 3/QPochhammer[-2, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)

Formula

a(n) ~ c * (-2)^n, where c = Product_{j>=1} 1/(1-1/(-2)^j) = 1/QPochhammer[-1/2,-1/2] = 0.8259519860658427384636116224100201356301... . - Vaclav Kotesovec, Aug 25 2015
G.f.: Sum_{i>=0} (-2)^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 13 2018

Extensions

More terms from Vaclav Kotesovec, Aug 25 2015

A261561 Expansion of Product_{k>=1} (1/(1 - 2*x^k))^k.

Original entry on oeis.org

1, 2, 8, 22, 64, 162, 424, 1022, 2480, 5770, 13336, 30046, 67184, 147554, 321592, 692278, 1479568, 3133474, 6596008, 13788606, 28679264, 59335530, 122256456, 250875550, 513116864, 1046190786, 2127557592, 4316282006, 8739096992, 17661731138, 35639764536
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;  `if`(n=0, 1, `if`(i<1, 0,
          add(2^j*binomial(i+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 21 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1/(1 - 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[Exp[Sum[2^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    {a(n) = polcoeff( exp( sum(m=1,n,x^m/m * sumdiv(m,d,2^d*m^2/d^2) ) +x*O(x^n)),n)}
    for(n=0,40,print1(a(n),", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

a(n) ~ c * 2^n, where c = Product_{j>=1} 1/(1 - 1/2^j)^(j+1) = 34.7387234654851595844514193757064296508992247003230539635669599773458896...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} 2^d * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015

A370713 a(n) = 2^n * [x^n] Product_{k>=1} 1/(1 - 2*x^k)^(1/2).

Original entry on oeis.org

1, 2, 10, 36, 150, 524, 2116, 7528, 29158, 107404, 409388, 1526712, 5843580, 22048056, 84476488, 322465104, 1240657798, 4769404556, 18436257820, 71280387736, 276583603220, 1074167182184, 4181581140280, 16295088132272, 63609310195164, 248542739388472, 972391744910392
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[1/(1-2*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 2^Range[0, nmax]
    nmax = 35; CoefficientList[Series[Product[1/(1-2*(2*x)^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Sqrt[-1/QPochhammer[2,x]], {x, 0, nmax}], x] * 2^Range[0, nmax]

Formula

G.f.: Product_{k>=1} 1/(1 - 2*(2*x)^k)^(1/2).
a(n) ~ 4^n / sqrt(Pi*QPochhammer(1/2)*n).
Previous Showing 11-20 of 45 results. Next