cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A372439 Numbers k such that the least binary index of k plus the least prime index of k is odd.

Original entry on oeis.org

2, 3, 6, 7, 8, 9, 10, 13, 14, 15, 18, 19, 21, 22, 24, 26, 27, 29, 30, 32, 33, 34, 37, 38, 39, 40, 42, 43, 45, 46, 49, 50, 51, 53, 54, 56, 57, 58, 61, 62, 63, 66, 69, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102
Offset: 1

Views

Author

Gus Wiseman, May 06 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms (center), their binary indices (left), and their prime indices (right) begin:
        {2}   2  (1)
      {1,2}   3  (2)
      {2,3}   6  (2,1)
    {1,2,3}   7  (4)
        {4}   8  (1,1,1)
      {1,4}   9  (2,2)
      {2,4}  10  (3,1)
    {1,3,4}  13  (6)
    {2,3,4}  14  (4,1)
  {1,2,3,4}  15  (3,2)
      {2,5}  18  (2,2,1)
    {1,2,5}  19  (8)
    {1,3,5}  21  (4,2)
    {2,3,5}  22  (5,1)
      {4,5}  24  (2,1,1,1)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
  {1,3,4,5}  29  (10)
  {2,3,4,5}  30  (3,2,1)
        {6}  32  (1,1,1,1,1)
      {1,6}  33  (5,2)
      {2,6}  34  (7,1)
		

Crossrefs

Positions of odd terms in A372437.
The complement is 1 followed by A372440.
For sum (A372428, zeros A372427) we have A372586, complement A372587.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
For length (A372441, zeros A071814) we have A372590, complement A372591.
A003963 gives product of prime indices, binary A096111.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[Min[bix[#]]+Min[prix[#]]]&]

A372440 Numbers k such that the least binary index of k plus the least prime index of k is even.

Original entry on oeis.org

4, 5, 11, 12, 16, 17, 20, 23, 25, 28, 31, 35, 36, 41, 44, 47, 48, 52, 55, 59, 60, 64, 65, 67, 68, 73, 76, 80, 83, 84, 85, 92, 95, 97, 100, 103, 108, 109, 112, 115, 116, 121, 124, 125, 127, 132, 137, 140, 143, 144, 145, 148, 149, 155, 156, 157, 164, 167, 172
Offset: 1

Views

Author

Gus Wiseman, May 06 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms (center), their binary indices (left), and their prime indices (right) begin:
          {3}   4  (1,1)
        {1,3}   5  (3)
      {1,2,4}  11  (5)
        {3,4}  12  (2,1,1)
          {5}  16  (1,1,1,1)
        {1,5}  17  (7)
        {3,5}  20  (3,1,1)
    {1,2,3,5}  23  (9)
      {1,4,5}  25  (3,3)
      {3,4,5}  28  (4,1,1)
  {1,2,3,4,5}  31  (11)
      {1,2,6}  35  (4,3)
        {3,6}  36  (2,2,1,1)
      {1,4,6}  41  (13)
      {3,4,6}  44  (5,1,1)
  {1,2,3,4,6}  47  (15)
        {5,6}  48  (2,1,1,1,1)
      {3,5,6}  52  (6,1,1)
  {1,2,3,5,6}  55  (5,3)
  {1,2,4,5,6}  59  (17)
    {3,4,5,6}  60  (3,2,1,1)
          {7}  64  (1,1,1,1,1,1)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
Positions of even terms in A372437.
The complement is 1 followed by A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
A003963 gives product of prime indices, binary A096111.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Min[bix[#]]+Min[prix[#]]]&]

A372587 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.

Original entry on oeis.org

6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372586.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {2,3}   6  (2,1)
          {1,2,3}   7  (4)
            {2,4}  10  (3,1)
          {1,2,4}  11  (5)
          {1,3,4}  13  (6)
          {2,3,4}  14  (4,1)
            {2,5}  18  (2,2,1)
          {1,2,5}  19  (8)
          {2,3,5}  22  (5,1)
        {1,2,3,5}  23  (9)
            {4,5}  24  (2,1,1,1)
          {1,4,5}  25  (3,3)
          {2,4,5}  26  (6,1)
        {1,2,4,5}  27  (2,2,2)
          {3,4,5}  28  (4,1,1)
        {2,3,4,5}  30  (3,2,1)
      {1,2,3,4,5}  31  (11)
            {1,6}  33  (5,2)
            {2,6}  34  (7,1)
          {1,2,6}  35  (4,3)
          {1,3,6}  37  (12)
          {2,3,6}  38  (8,1)
		

Crossrefs

Positions of even terms in A372428, zeros A372427.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372586.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is even.

A372687 Number of prime numbers whose binary indices sum to n. Number of strict integer partitions y of n such that Sum_i 2^(y_i-1) is prime.

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 2, 1, 2, 0, 3, 3, 1, 4, 1, 6, 5, 8, 4, 12, 8, 12, 7, 20, 8, 16, 17, 27, 19, 38, 19, 46, 33, 38, 49, 65, 47, 67, 83, 92, 94, 113, 103, 130, 146, 127, 215, 224, 176, 234, 306, 270, 357, 383, 339, 393, 537, 540, 597, 683, 576, 798, 1026, 830, 1157
Offset: 0

Views

Author

Gus Wiseman, May 15 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Note the inverse of A048793 (binary indices) takes a set s to Sum_i 2^(s_i-1).

Examples

			The a(2) = 1 through a(17) = 8 prime numbers:
  2  3  5  .  17  11  19  .  257  131  73  137  97  521  4099  1031
              7       13     67   41       71       263  2053  523
                             37   23       43       139  1033  269
                                           29       83   193   163
                                                    53   47    149
                                                    31         101
                                                               89
                                                               79
The a(2) = 1 through a(11) = 3 strict partitions:
  (2)  (2,1)  (3,1)  .  (5,1)    (4,2,1)  (4,3,1)  .  (9,1)    (6,4,1)
                        (3,2,1)           (5,2,1)     (6,3,1)  (8,2,1)
                                                      (7,2,1)  (5,3,2,1)
		

Crossrefs

For all positive integers (not just prime) we get A000009.
Number of prime numbers p with A029931(p) = n.
For odd instead of prime we have A096765, even A025147, non-strict A087787
Number of times n appears in A372429.
Number of rows of A372471 with sum n.
The non-strict version is A372688 (or A372887), ranks A277319 (or A372850).
These (strict) partitions have Heinz numbers A372851.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A038499 counts partitions of prime length, strict A085756.
A048793 lists binary indices:
- length A000120
- min A001511
- sum A029931
- max A070939
- reverse A272020
A058698 counts partitions of prime numbers, strict A064688.
A096111 gives product of binary indices.
A372689 lists numbers whose binary indices sum to a prime.
A372885 lists primes whose binary indices sum to a prime, indices A372886.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&PrimeQ[Total[2^#]/2]&]],{n,0,30}]

A372850 Numbers whose distinct prime indices are the binary indices of some prime number.

Original entry on oeis.org

3, 6, 9, 10, 12, 18, 20, 22, 24, 27, 30, 36, 40, 42, 44, 46, 48, 50, 54, 60, 66, 70, 72, 80, 81, 84, 88, 90, 92, 96, 100, 102, 108, 114, 118, 120, 126, 130, 132, 140, 144, 150, 160, 162, 168, 176, 180, 182, 184, 192, 198, 200, 204, 216, 228, 236, 238, 240, 242
Offset: 1

Views

Author

Gus Wiseman, May 16 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Note the function taking a set s to its rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices).

Examples

			The distinct prime indices of 45 are {2,3}, which are the binary indices of 6, which is not prime, so 45 is not in the sequence.
The distinct prime indices of 60 are {1,2,3}, which are the binary indices of 7, which is prime, so 60 is in the sequence.
The terms together with their prime indices begin:
    3: {2}
    6: {1,2}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   46: {1,9}
   48: {1,1,1,1,2}
   50: {1,3,3}
   54: {1,2,2,2}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
		

Crossrefs

For even instead of prime we have A005408, with multiplicity A003159.
For odd instead of prime we have A005843, with multiplicity A036554.
For prime indices with multiplicity we have A277319, counted by A372688.
The squarefree case is A372851, counted by A372687.
Partitions of this type are counted by A372887.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A038499 counts partitions of prime length, strict A085756.
A048793 and A272020 (reverse) list binary indices:
- length A000120
- min A001511
- sum A029931
- max A070939
A058698 counts partitions of prime numbers, strict A064688.
A372885 lists primes whose binary indices sum to a prime, indices A372886.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeQ[Total[2^(Union[prix[#]]-1)]]&]

Formula

Numbers k such that Sum_{i:prime(i)|k} 2^(i-1) is prime, where the sum is over the distinct prime indices of k.

A372851 Squarefree numbers whose prime indices are the binary indices of some prime number.

Original entry on oeis.org

3, 6, 10, 22, 30, 42, 46, 66, 70, 102, 114, 118, 130, 182, 238, 246, 266, 318, 330, 354, 370, 402, 406, 434, 442, 510, 546, 646, 654, 690, 762, 770, 798, 930, 938, 946, 962, 986, 1066, 1102, 1122, 1178, 1218, 1222, 1246, 1258, 1334, 1378, 1430, 1482, 1578
Offset: 1

Views

Author

Gus Wiseman, May 16 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Note the function taking a set s to its rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices).

Examples

			The prime indices of 70 are {1,3,4}, which are the binary indices of 13, which is prime, so 70 is in the sequence.
The prime indices of 15 are {2,3}, which are the binary indices of 6, which is not prime, so 15 is not in the sequence.
The terms together with their prime indices begin:
    3: {2}
    6: {1,2}
   10: {1,3}
   22: {1,5}
   30: {1,2,3}
   42: {1,2,4}
   46: {1,9}
   66: {1,2,5}
   70: {1,3,4}
  102: {1,2,7}
  114: {1,2,8}
  118: {1,17}
  130: {1,3,6}
  182: {1,4,6}
  238: {1,4,7}
  246: {1,2,13}
  266: {1,4,8}
  318: {1,2,16}
  330: {1,2,3,5}
  354: {1,2,17}
  370: {1,3,12}
  402: {1,2,19}
		

Crossrefs

[Warning: do not confuse A372887 with the strict case A372687.]
For odd instead of prime we have A039956.
For even instead of prime we have A056911.
Strict partitions of this type are counted by A372687.
Non-strict partitions of this type are counted by A372688, ranks A277319.
The nonsquarefree version is A372850, counted by A372887.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A038499 counts partitions of prime length, strict A085756.
A048793 and A272020 (reverse) list binary indices:
- length A000120
- min A001511
- sum A029931
- max A070939
A058698 counts partitions of prime numbers, strict A064688.
A372885 lists primes whose binary indices sum to a prime, indices A372886.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#] && PrimeQ[Total[2^(PrimePi/@First/@FactorInteger[#]-1)]]&]

Formula

Squarefree numbers k such that Sum_{i:prime(i)|k} 2^(i-1) is prime, where the sum is over the (distinct) prime indices of k.

A071594 Numbers k such that the number of 1's in the binary representation of k equals omega(k), the number of distinct primes in the factorization of k.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 16, 18, 20, 24, 32, 33, 34, 36, 40, 42, 48, 64, 65, 68, 70, 72, 80, 84, 96, 128, 129, 136, 138, 140, 144, 160, 168, 192, 210, 256, 266, 272, 273, 276, 280, 288, 290, 320, 322, 330, 336, 384, 385, 390, 420, 512, 513, 514, 518, 522, 530, 532
Offset: 1

Views

Author

Benoit Cloitre, Jun 01 2002

Keywords

Examples

			129 = 10000001 in base 2 and 129 = 3*43 hence 129 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000], Length[FactorInteger[#]] == DigitCount[#, 2, 1] &] (* Ivan Neretin, May 30 2015 *)
  • PARI
    for(n=1,1000,if(sum(i=1,length(binary(n)), component(binary(n),i))==omega(n),print1(n,",")))
    
  • PARI
    select(n->hammingweight(n)==omega(n), vector(1000, n, n)) \\ Michel Marcus, May 30 2015

Extensions

Name edited by Amiram Eldar, Jan 11 2020

A372430 Positive integers k such that the distinct prime indices of k are a subset of the binary indices of k.

Original entry on oeis.org

1, 3, 5, 15, 27, 39, 55, 63, 85, 121, 125, 135, 169, 171, 175, 209, 243, 247, 255, 299, 375, 399, 437, 459, 507, 539, 605, 637, 725, 735, 783, 841, 867, 891, 1085, 1215, 1323, 1331, 1375, 1519, 1767, 1815, 1863, 2079, 2125, 2187, 2223, 2295, 2299, 2331, 2405
Offset: 1

Views

Author

Gus Wiseman, May 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Conjecture: The only number whose binary indices are a subset of its prime indices is 4100, with binary indices {3,13} and prime indices {1,1,3,3,13}. Verified up to 10,000,000.

Examples

			The prime indices of 135 are {2,2,2,3}, and the binary indices are {1,2,3,8}. Since {2,3} is a subset of {1,2,3,8}, 135 is in the sequence.
The terms together with their prime indices begin:
     1: {}
     3: {2}
     5: {3}
    15: {2,3}
    27: {2,2,2}
    39: {2,6}
    55: {3,5}
    63: {2,2,4}
    85: {3,7}
   121: {5,5}
   125: {3,3,3}
The terms together with their binary expansions and binary indices begin:
     1:              1 ~ {1}
     3:             11 ~ {1,2}
     5:            101 ~ {1,3}
    15:           1111 ~ {1,2,3,4}
    27:          11011 ~ {1,2,4,5}
    39:         100111 ~ {1,2,3,6}
    55:         110111 ~ {1,2,3,5,6}
    63:         111111 ~ {1,2,3,4,5,6}
    85:        1010101 ~ {1,3,5,7}
   121:        1111001 ~ {1,4,5,6,7}
   125:        1111101 ~ {1,3,4,5,6,7}
		

Crossrefs

The version for equal lengths is A071814, zeros of A372441.
The version for equal sums is A372427, zeros of A372428.
For disjoint instead of subset we have A372431, complement A372432.
The version for equal maxima is A372436, zeros of A372442.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],SubsetQ[bix[#],prix[#]]&]

Formula

Row k of A304038 is a subset of row k of A048793.

A372686 Sorted list of positions of first appearances in A014499 (number of ones in binary expansion of each prime).

Original entry on oeis.org

1, 2, 4, 9, 11, 31, 64, 76, 167, 309, 502, 801, 1028, 6363, 7281, 12079, 12251, 43237, 43390, 146605, 291640, 951351, 1046198, 2063216, 3957778, 11134645, 14198321, 28186247, 54387475, 105097565, 249939829, 393248783, 751545789, 1391572698, 2182112798, 8242984130
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The unsorted version is A372517.

Examples

			The sequence contains 9 because the first 9 terms of A014499 are 1, 2, 2, 3, 3, 3, 2, 3, 4, and the last of these is the first position of 4.
		

Crossrefs

Positions of first appearances in A014499.
The unsorted version is A372517.
For binary length we have A372684, primes A104080, firsts of A035100.
Taking primes gives A372685, unsorted version A061712.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A029837 gives greatest binary index, least A001511.
A030190 gives binary expansion, reversed A030308.
A035103 counts zeros in binary expansion of each prime, firsts A372474.
A048793 lists binary indices, reverse A272020, sum A029931.
A070939 gives length of binary expansion (number of bits).
A372471 lists binary indices of primes.

Programs

  • Mathematica
    First/@GatherBy[Range[1000],DigitCount[Prime[#],2,1]&]

Formula

prime(a(n)) = A372685(n).

Extensions

a(26)-a(36) from Pontus von Brömssen, May 15 2024

A372431 Positive integers k such that the prime indices of k are disjoint from the binary indices of k.

Original entry on oeis.org

1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 21, 23, 24, 25, 26, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 53, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83, 84, 86, 89, 92, 93, 94, 96, 97, 98, 101
Offset: 1

Views

Author

Gus Wiseman, May 03 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of 65 are {1,7}, and the prime indices are {3,6}, so 65 is in the sequence.
The terms together with their prime indices begin:
     1: {}
     2: {1}
     4: {1,1}
     7: {4}
     8: {1,1,1}
     9: {2,2}
    10: {1,3}
    11: {5}
    12: {1,1,2}
    13: {6}
    16: {1,1,1,1}
The terms together with their binary expansions and binary indices begin:
   1:       1 ~ {1}
   2:      10 ~ {2}
   4:     100 ~ {3}
   7:     111 ~ {1,2,3}
   8:    1000 ~ {4}
   9:    1001 ~ {1,4}
  10:    1010 ~ {2,4}
  11:    1011 ~ {1,2,4}
  12:    1100 ~ {3,4}
  13:    1101 ~ {1,3,4}
  16:   10000 ~ {5}
		

Crossrefs

For subset instead of disjoint we have A372430.
The complement is A372432.
Equal lengths: A071814, zeros of A372441.
Equal sums: A372427, zeros of A372428.
Equal maxima: A372436, zeros of A372442.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[bix[#],prix[#]]=={}&]
Previous Showing 21-30 of 32 results. Next